【考研数学一·高数(5)】一元函数积分学

1. ∫ a x f ( t ) d t , f ( x ) , f ′ ( x ) \int_a^xf(t)\mathrm{d}t,f(x),f'(x) axf(t)dt,f(x),f(x)的奇偶性和周期性

  1. f ′ ( x ) f'(x) f(x)为偶函数 ⇐ f ( x ) \Leftarrow f(x) f(x)为奇函数 ⇒ { ∫ 0 x f ( t ) d t 为偶函数 ∫ a x f ( t ) d t 为偶函数 ( a ≠ 0 ) \Rightarrow\begin{cases}\int_0^xf(t)\mathrm{d}t为偶函数\\\int_a^xf(t)\mathrm{d}t为偶函数(a\ne0)\end{cases} {0xf(t)dt为偶函数axf(t)dt为偶函数(a=0)
  2. f ′ ( x ) f'(x) f(x)为奇函数 ⇐ f ( x ) \Leftarrow f(x) f(x)为偶函数 ⇒ { ∫ 0 x f ( t ) d t 为奇函数 ∫ a x f ( t ) d t ( a ≠ 0 ) { 为奇函数 , 若 ∫ a x f ( t ) d t = ∫ 0 x f ( t ) d t 为非奇非偶函数 , 若 ∫ a x f ( t ) d t 、 n e ∫ 0 x f ( t ) d t \Rightarrow\begin{cases}\int_0^xf(t)\mathrm{d}t为奇函数\\\int_a^xf(t)\mathrm{d}t(a\ne0)\begin{cases}为奇函数,若\int_a^xf(t)\mathrm{d}t=\int_0^xf(t)\mathrm{d}t\\为非奇非偶函数,若\int_a^xf(t)\mathrm{d}t、ne\int_0^xf(t)\mathrm{d}t\end{cases}\end{cases} 0xf(t)dt为奇函数axf(t)dt(a=0){为奇函数,axf(t)dt=0xf(t)dt为非奇非偶函数,axf(t)dtne0xf(t)dt
  3. f ′ ( x ) f'(x) f(x)是以 T T T为周期的周期函数 ⇐ f ( x ) \Leftarrow f(x) f(x)是以 T T T为周期的周期函数 ⇒ { ∫ 0 x f ( t ) d t 是以 T 为周期的周期函数,若 ∫ 0 T f ( x ) d x = 0 ∫ 0 T f ( x ) d x = ∫ a a + T f ( x ) d x \Rightarrow\begin{cases}\int_0^xf(t)\mathrm{d}t是以T为周期的周期函数,若\int_0^Tf(x)\mathrm{d}x=0\\\int_0^Tf(x)\mathrm{d}x=\int_a^{a+T}f(x)\mathrm{d}x\end{cases} {0xf(t)dt是以T为周期的周期函数,若0Tf(x)dx=00Tf(x)dx=aa+Tf(x)dx

2.不定积分

2.1.原函数(不定积分)存在定理

  1. 连续函数必有原函数.
  2. 含有第一类间断点和无穷间断点的函数在包含该间断点的区间内必没有原函数.

3.定积分

3.1.定义

∫ a b f ( x ) d x = lim ⁡ n → ∞ ∑ i = 1 n f ( a + b − a n i ) b − a n \int_a^bf(x)\mathrm{d}x=\lim\limits_{n\to\infty}\sum\limits_{i=1}^nf(a+\frac{b-a}{n}i)\frac{b-a}{n} abf(x)dx=nlimi=1nf(a+nbai)nba

3.2.定积分存在定理

  1. 充分条件
    • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续 ⇒ ∫ a b f ( x ) d x \Rightarrow \int_a^bf(x)\mathrm{d}x abf(x)dx存在
    • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上单调 ⇒ ∫ a b f ( x ) d x \Rightarrow \int_a^bf(x)\mathrm{d}x abf(x)dx存在
    • f ( x ) f(x) f(x) [ a . b ] [a.b] [a.b]上有界,且只有有限个间断点 ⇒ ∫ a b f ( x ) d x \Rightarrow \int_a^bf(x)\mathrm{d}x abf(x)dx存在
  2. 必要条件
    • 可积函数必有界.

3.3.数列和的极限计算

3.3.1.基本形(凑成 i n \frac{i}{n} ni

通项公式中含 i n , a n + b i ( a b ≠ 0 ) , n 2 + i 2 , n 2 + n i \frac{i}{n},an+bi(ab\ne0),n^2+i^2,n^2+ni ni,an+bi(ab=0),n2+i2,n2+ni

lim ⁡ n → ∞ ∑ i = 1 n f ( i n ) 1 n = ∫ 0 1 f ( x ) d x \lim\limits_{n\to\infty}\sum\limits_{i=1}^nf(\frac{i}{n})\frac{1}{n}=\int_0^1f(x)\mathrm{d}x nlimi=1nf(ni)n1=01f(x)dx lim ⁡ n → ∞ ∑ i = 0 n − 1 f ( i n ) 1 n = ∫ 0 1 f ( x ) d x \lim\limits_{n\to\infty}\sum\limits_{i=0}^{n-1}f(\frac{i}{n})\frac{1}{n}=\int_0^1f(x)\mathrm{d}x nlimi=0n1f(ni)n1=01f(x)dx

3.3.2.放缩形(凑不成 i n \frac{i}{n} ni
  1. 夹逼准则

  2. 放缩后再凑 i n \frac{i}{n} ni

    ( i n ) 2 < i 2 + 1 n 2 < ( i + 1 n ) 2 {(\frac{i}{n})}^2<\frac{i^2+1}{n^2}<{(\frac{i+1}{n})}^2 (ni)2<n2i2+1<(ni+1)2

3.3.3.变量形

通项中含 x n i ⇒ lim ⁡ n → ∞ ∑ i = 1 n f ( 0 + x − 0 n i ) x − 0 n = ∫ 0 x f ( t ) d t \frac{x}{n}i\Rightarrow\lim\limits_{n\to\infty}\sum\limits_{i=1}^nf(0+\frac{x-0}{n}i)\frac{x-0}{n}=\int_0^xf(t)\mathrm{d}t nxinlimi=1nf(0+nx0i)nx0=0xf(t)dt

4.变限积分

4.1.性质

  1. f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积 ⇒ F ( x ) = ∫ a x f ( t ) d t \Rightarrow F(x)=\int_a^xf(t)\mathrm{d}t F(x)=axf(t)dt [ a , b ] [a,b] [a,b]上连续
  2. f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续 ⇒ F ( x ) = ∫ a x f ( t ) d t \Rightarrow F(x)=\int_a^xf(t)\mathrm{d}t F(x)=axf(t)dt [ a , b ] [a,b] [a,b]上可导, F ( x ) F(x) F(x) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的一个原函数
  3. F ( x ) = ∫ a x f ( t ) d t F(x)=\int_a^xf(t)\mathrm{d}t F(x)=axf(t)dt存在必然连续

5.反常积分

5.1.概念

  1. ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx叫无穷区间上的反常积分
  2. ∫ a b f ( x ) d x \int_a^bf(x)\mathrm{d}x abf(x)dx,其中 lim ⁡ x → a + f ( x ) = ∞ \lim\limits_{x\to a^+}f(x)=\infty xa+limf(x)= a a a叫瑕点,积分叫无界函数的反常积分
  3. + ∞ , − ∞ , +\infty,-\infty, +,,瑕点统称为奇点

5.2.反常积分敛散性判别

判别时要求每个积分有且仅有一个奇点

5.3.重要结论
  1. ∫ 1 + ∞ d x x p ⇒ { p > 1 , 收敛 p ⩽ 1 , 发散 \int_1^{+\infty}\frac{\mathrm{d}x}{x^p}\Rightarrow\begin{cases}p>1,收敛\\p\leqslant1,发散\end{cases} 1+xpdx{p>1,收敛p1,发散

    ∫ 1 + ∞ ln ⁡ x x p d x ⇒ { p > 1 , 收敛 p ⩽ 1 , 发散 \int_1^{+\infty}\frac{\ln x}{x^p}\mathrm{d}x\Rightarrow\begin{cases}p>1,收敛\\p\leqslant1,发散\end{cases} 1+xplnxdx{p>1,收敛p1,发散

  2. ∫ 0 1 d x x p ⇒ { 0 < p < 1 , 收敛 p ⩾ 1 , 发散 \int_0^1\frac{\mathrm{d}x}{x^p}\Rightarrow\begin{cases}0<p<1,收敛\\p\geqslant1,发散\end{cases} 01xpdx{0<p<1,收敛p1,发散

    ∫ 0 1 ln ⁡ x x p d x ⇒ { 0 < p < 1 , 收敛 p ⩾ 1 , 发散 \int_0^1\frac{\ln x}{x^p}\mathrm{d}x\Rightarrow\begin{cases}0<p<1,收敛\\p\geqslant1,发散\end{cases} 01xplnxdx{0<p<1,收敛p1,发散

  3. ∫ 2 + ∞ 1 x ln ⁡ p x d x ⇒ { p > 1 , 收敛 p ⩽ 1 , 发散 \int_2^{+\infty}\frac{1}{x\ln^px}\mathrm{d}x\Rightarrow\begin{cases}p>1,收敛\\p\leqslant1,发散\end{cases} 2+xlnpx1dx{p>1,收敛p1,发散

5.4.比较判别法
  1. 设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)在区间 [ a , + ∞ ) [a,+\infty) [a,+)上连续,且 0 ⩽ f ( x ) ⩽ g ( x ) ( a ⩽ x < + ∞ ) 0\leqslant f(x)\leqslant g(x)(a\leqslant x<+\infty) 0f(x)g(x)(ax<+)
    • ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)\mathrm{d}x a+g(x)dx收敛 ⇒ ∫ a + ∞ f ( x ) d x \Rightarrow \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx收敛
    • ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx发散 ⇒ ∫ a + ∞ g ( x ) d x \Rightarrow \int_a^{+\infty}g(x)\mathrm{d}x a+g(x)dx
  2. 设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)在区间 [ a , + ∞ ) [a,+\infty) [a,+)上连续,且 f ( x ) ⩾ 0 , g ( x ) > 0 , lim ⁡ x → + ∞ f ( x ) g ( x ) = λ f(x)\geqslant0,g(x)>0,\lim\limits_{x\to+\infty}\frac{f(x)}{g(x)}=\lambda f(x)0,g(x)>0,x+limg(x)f(x)=λ
    • λ ≠ 0 ⇒ ∫ a + ∞ f ( x ) d x \lambda\ne0\Rightarrow \int_a^{+\infty}f(x)\mathrm{d}x λ=0a+f(x)dx ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)\mathrm{d}x a+g(x)dx敛散性相同
    • λ = 0 \lambda=0 λ=0时, ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)\mathrm{d}x a+g(x)dx收敛 ⇒ ∫ a + ∞ f ( x ) d x \Rightarrow \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx收敛
    • λ = ∞ \lambda=\infty λ=时, ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)\mathrm{d}x a+g(x)dx发散 ⇒ ∫ a + ∞ f ( x ) d x \Rightarrow \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx

6.积分的计算

6.1.基本积分公式

  1. ∫ x k d x = 1 k + 1 x k + 1 + C ( k ≠ − 1 )            { ∫ 1 x 2 d x = − 1 x + C ∫ 1 x d x = 2 x + C \int x^k\mathrm{d}x=\frac{1}{k+1}x^{k+1}+C(k\ne-1)~~~~~~~~~~\begin{cases}\int\frac{1}{x^2}\mathrm{d}x=-\frac{1}{x}+C\\\int\frac{1}{\sqrt x}\mathrm{d}x=2\sqrt x+C\end{cases} xkdx=k+11xk+1+C(k=1)          {x21dx=x1+Cx 1dx=2x +C

  2. ∫ 1 x d x = ln ⁡ ∣ x ∣ + C \int\frac{1}{x}\mathrm{d}x=\ln|x|+C x1dx=lnx+C

  3. { ∫ e x d x = e x + C ∫ a x d x = a x ln ⁡ a + C \begin{cases}\int e^x\mathrm{d}x=e^x+C\\\int a^x\mathrm{d}x=\frac{a^x}{\ln a}+C\end{cases} {exdx=ex+Caxdx=lnaax+C

  4. { ∫ sin ⁡ x d x = − cos ⁡ x + C ∫ cos ⁡ x d x = sin ⁡ x + C \begin{cases}\int\sin x\mathrm{d}x=-\cos x+C\\\int\cos x\mathrm{d}x=\sin x+C\end{cases} {sinxdx=cosx+Ccosxdx=sinx+C

  5. { ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C ∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \begin{cases}\int\tan x\mathrm{d}x=-\ln|\cos x|+C\\\int\cot x\mathrm{d}x=\ln|\sin x|+C\end{cases} {tanxdx=lncosx+Ccotxdx=lnsinx+C

  6. { ∫ d x cos ⁡ x = ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ∫ d x sin ⁡ x = ∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \begin{cases}\int\frac{\mathrm{d}x}{\cos x}=\int\sec x\mathrm{d}x=\ln|\sec x+\tan x|+C\\\int\frac{\mathrm{d}x}{\sin x}=\int\csc x\mathrm{d}x=\ln|\csc x-\cot x|+C\end{cases} {cosxdx=secxdx=lnsecx+tanx+Csinxdx=cscxdx=lncscxcotx+C

  7. { ∫ sec ⁡ 2 x d x = tan ⁡ x + C ∫ csc ⁡ 2 x d x = − cot ⁡ x + C \begin{cases}\int\sec^2x\mathrm{d}x=\tan x+C\\\int\csc^2x\mathrm{d}x=-\cot x+C\end{cases} {sec2xdx=tanx+Ccsc2xdx=cotx+C

  8. { ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C \begin{cases}\int\sec x\tan x\mathrm{d}x=\sec x+C\\\int\csc x\cot x\mathrm{d}x=-\csc x+C\end{cases} {secxtanxdx=secx+Ccscxcotxdx=cscx+C

  9. { ∫ 1 1 + x 2 d x = arctan ⁡ x + C ∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C ( a > 0 ) \begin{cases}\int\frac{1}{1+x^2}\mathrm{d}x=\arctan x+C\\\int\frac{1}{a^2+x^2}\mathrm{d}x=\frac{1}{a}\arctan\frac{x}{a}+C(a>0)\end{cases} {1+x21dx=arctanx+Ca2+x21dx=a1arctanax+C(a>0)

  10. { ∫ 1 1 − x 2 d x = arcsin ⁡ x + C ∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C ( a > 0 ) \begin{cases}\int\frac{1}{\sqrt{1-x^2}}\mathrm{d}x=\arcsin x+C\\\int\frac{1}{\sqrt{a^2-x^2}}\mathrm{d}x=\arcsin\frac{x}{a}+C(a>0)\end{cases} {1x2 1dx=arcsinx+Ca2x2 1dx=arcsinax+C(a>0)

  11. { ∫ 1 x 2 + a 2 d x = ln ⁡ ( x + x 2 + a 2 ) + C ∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C ( ∣ x ∣ > ∣ a ∣ ) \begin{cases}\int\frac{1}{\sqrt{x^2+a^2}}\mathrm{d}x=\ln(x+\sqrt{x^2+a^2})+C\\\int\frac{1}{\sqrt{x^2-a^2}}\mathrm{d}x=\ln|x+\sqrt{x^2-a^2}|+C(|x|>|a|)\end{cases} {x2+a2 1dx=ln(x+x2+a2 )+Cx2a2 1dx=lnx+x2a2 +C(x>a)

  12. { ∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C ∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ x + a x − a ∣ + C \begin{cases}\int\frac{1}{x^2-a^2}\mathrm{d}x=\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C\\\int\frac{1}{a^2-x^2}\mathrm{d}x=\frac{1}{2a}\ln|\frac{x+a}{x-a}|+C\end{cases} {x2a21dx=2a1lnx+axa+Ca2x21dx=2a1lnxax+a+C

  13. ∫ a 2 − x 2 d x = a 2 2 arcsin ⁡ x a + x 2 a 2 − x 2 + C ( a > ∣ x ∣ ⩾ 0 ) \int\sqrt{a^2-x^2}\mathrm{d}x=\frac{a^2}{2}\arcsin\frac{x}{a}+\frac{x}{2}\sqrt{a^2-x^2}+C(a>|x|\geqslant0) a2x2 dx=2a2arcsinax+2xa2x2 +C(a>x0)

  14. ∫ x 2 ± a 2 d x = 1 2 x x 2 ± a 2 ± 1 2 a 2 ln ⁡ ∣ x + x 2 ± a 2 ∣ \int\sqrt{x^2\pm a^2}\mathrm{d}x=\frac{1}{2}x\sqrt{x^2\pm a^2}\pm\frac{1}{2}a^2\ln|x+\sqrt{x^2\pm a^2|} x2±a2 dx=21xx2±a2 ±21a2lnx+x2±a2

6.2.凑微分法

∫ f [ g ( x ) ] g ′ ( x ) d x = ∫ f [ g ( x ) ] d [ g ( x ) ] = g ( x ) = u ∫ f ( u ) d u \int f[g(x)]g'(x)\mathrm{d}x=\int f[g(x)]\mathrm{d}[g(x)]\stackrel{g(x)=u}{=}\int f(u)\mathrm{d}u f[g(x)]g(x)dx=f[g(x)]d[g(x)]=g(x)=uf(u)du

6.3.换元法求积分

∫ f ( x ) d x = x = g ( u ) ∫ f [ g ( u ) ] d [ g ( u ) ] = ∫ f [ g ( u ) ] g ′ ( u ) d u \int f(x)\mathrm{d}x\stackrel{x=g(u)}{=}\int f[g(u)]\mathrm{d}[g(u)]=\int f[g(u)]g'(u)\mathrm{d}u f(x)dx=x=g(u)f[g(u)]d[g(u)]=f[g(u)]g(u)du

  • 不定积分:不要忘记计算完用反函数 u = g − 1 ( x ) u=g^{-1}(x) u=g1(x)回代
  • 定积分:换元要三换
6.3.1.三角函数代换

{ a 2 − x 2 → x = a sin ⁡ t , ∣ t ∣ < π 2 a 2 + x 2 → x = a tan ⁡ t , ∣ t ∣ < π 2 x 2 − a 2 → x = a sec ⁡ t { x > 0 → 0 < t < π 2 x < 0 → π 2 < t < π \begin{cases}\sqrt{a^2-x^2}\to x=a\sin t,|t|<\frac{\pi}{2}\\\sqrt{a^2+x^2}\to x=a\tan t,|t|<\frac{\pi}{2}\\\sqrt{x^2-a^2}\to x=a\sec t\begin{cases}x>0\to 0<t<\frac{\pi}{2}\\x<0\to \frac{\pi}{2}<t<\pi\end{cases}\end{cases} a2x2 x=asint,t<2πa2+x2 x=atant,t<2πx2a2 x=asect{x>00<t<2πx<02π<t<π

6.3.2.恒等变形后作三角函数代换

a x 2 + b x + c → φ 2 ( x ) + k 2 / φ 2 ( x ) − k 2 / k 2 − φ 2 ( x ) \sqrt{ax^2+bx+c}\to\sqrt{\varphi^2(x)+k^2}/\sqrt{\varphi^2(x)-k^2}/\sqrt{k^2-\varphi^2(x)} ax2+bx+c φ2(x)+k2 /φ2(x)k2 /k2φ2(x)

6.3.3.根式代换

a x + b n a x + b c x + d a e b x + c } → 令 ∗ = t \left.\begin{matrix}\sqrt[n]{ax+b}\\\sqrt{\frac{ax+b}{cx+d}}\\\sqrt{ae^{bx}+c}\end{matrix}\right\}\to令\sqrt *=t nax+b cx+dax+b aebx+c =t

既含 a x + b n , 又含 a x + b m 的函数 , 令 a x + b l = t ( l 为 m , n 最小公倍数 ) 既含\sqrt[n]{ax+b},又含\sqrt[m]{ax+b}的函数,令\sqrt[l]{ax+b}=t(l为m,n最小公倍数) 既含nax+b ,又含max+b 的函数,lax+b =t(lm,n最小公倍数)

6.3.4.倒代换

当被积函数分母的幂次比分子高两次及以上,令 x = 1 t x=\frac{1}{t} x=t1

6.3.5.复杂函数直接代换

含 a x , e x , ln ⁡ x , arcsin ⁡ x , arctan ⁡ x 的函数 , 可直接令复杂函数等于 t 含a^x,e^x,\ln x,\arcsin x,\arctan x的函数,可直接令复杂函数等于t ax,ex,lnx,arcsinx,arctanx的函数,可直接令复杂函数等于t

( 当 ln ⁡ x , arcsin ⁡ x , arctan ⁡ x 与 P n ( x ) 或 e a x ) 作乘法时 , 优先考虑分部积分法 (当\ln x,\arcsin x,\arctan x与P_n(x)或e^{ax})作乘法时,优先考虑分部积分法 (lnx,arcsinx,arctanxPn(x)eax)作乘法时,优先考虑分部积分法

6.4.分部积分法求积分

∫ u d v = u v − ∫ v d u \int u\mathrm{d}v=uv-\int v\mathrm{d}u udv=uvvdu

  • u , v u,v u,v的选取原则——反、对、幂、指、三(左边 u u u,右边 v v v
6.4.1.表格法

∫ u v n + 1 d x = u n ( n ) − u ′ v ( n − 1 ) + u ′ ′ v ( n − 2 ) + . . . + ( − 1 ) n u ( n ) v + ( − 1 ) n + 1 ∫ u n + 1 v d x \int uv^{n+1}\mathrm{d}x=un^{(n)}-u'v^{(n-1)}+u''v^{(n-2)}+...+{(-1)}^nu^{(n)}v+{(-1)}^{n+1}\int u^{n+1}v\mathrm{d}x uvn+1dx=un(n)uv(n1)+u′′v(n2)+...+(1)nu(n)v+(1)n+1un+1vdx

u 的各阶导数 u的各阶导数 u的各阶导数 u u u u ′ u' u u ′ ′ u'' u′′ u ′ ′ ′ u''' u′′′ u ( n + 1 ) ( − 1 ) n + 1 u^{(n+1)}{(-1)}^{n+1} u(n+1)(1)n+1
v ( n + 1 ) 的各阶原函数 v^{(n+1)}的各阶原函数 v(n+1)的各阶原函数 v ( n + 1 ) v^{(n+1)} v(n+1) v ( n ) v^{(n)} v(n) v ( n − 1 ) v^{(n-1)} v(n1) v ( n − 2 ) v^{(n-2)} v(n2) v v v

以 u 为起点 , 左上右下错位相乘,正负相间 , 最后一项为 ( − 1 ) n + 1 ∫ u ( n + 1 ) v d x 以u为起点,左上右下错位相乘,正负相间,最后一项为{(-1)}^{n+1}\int u^{(n+1)}v\mathrm{d}x u为起点,左上右下错位相乘,正负相间,最后一项为(1)n+1u(n+1)vdx

6.4.2.结论

∫ e a x sin ⁡ b x d x = ∣ ( e a x ) ′ ( sin ⁡ b x ) ′ e a x sin ⁡ b x ∣ a 2 + b 2 + C ∫ e a x cos ⁡ b x d x = ∣ ( e a x ) ′ ( cos ⁡ b x ) ′ e a x cos ⁡ b x ∣ a 2 + b 2 + C \int e^{ax}\sin bx\mathrm{d}x=\frac{\begin{vmatrix}(e^{ax})'&(\sin bx)'\\e^{ax}&\sin bx\end{vmatrix}}{a^2+b^2}+C \\\int e^{ax}\cos bx\mathrm{d}x=\frac{\begin{vmatrix}(e^{ax})'&(\cos bx)'\\e^{ax}&\cos bx\end{vmatrix}}{a^2+b^2}+C eaxsinbxdx=a2+b2 (eax)eax(sinbx)sinbx +Ceaxcosbxdx=a2+b2 (eax)eax(cosbx)cosbx +C

6.5.有理函数的积分

6.5.1.定义

形如 ∫ P n ( x ) Q m ( x ) d x ( n < m ) \int\frac{P_n(x)}{Q_m{(x)}}\mathrm{d}x(n<m) Qm(x)Pn(x)dx(n<m),其中 P n ( x ) , Q m ( x ) P_n(x),Q_m(x) Pn(x),Qm(x) x x x n , m n,m n,m次多项式

6.5.2.方法

Q m ( x ) Q_m(x) Qm(x)的因式 { ( a x + b ) ⇒ A a x + b ( a x + b ) k ⇒ A 1 a x + b , A 2 A X + B , ⋯   , A k a x + b p x 2 + q x + r ⇒ A x + B p x 2 + q x + r ( p x 2 + q x + r ) k ⇒ A 1 x + B 1 p x 2 + q x + r , A 2 x + B 2 p x 2 + q x + r , ⋯   , A k x + B k p x 2 + q x + r \begin{cases}(ax+b)\Rightarrow\frac{A}{ax+b}\\(ax+b)^k\Rightarrow\frac{A_1}{ax+b},\frac{A_2}{AX+B},\cdots,\frac{A_k}{ax+b}\\px^2+qx+r\Rightarrow\frac{Ax+B}{px^2+qx+r}\\(px^2+qx+r)^k\Rightarrow\frac{A_1x+B_1}{px^2+qx+r},\frac{A_2x+B_2}{px^2+qx+r},\cdots,\frac{A_kx+B_k}{px^2+qx+r}\end{cases} (ax+b)ax+bA(ax+b)kax+bA1,AX+BA2,,ax+bAkpx2+qx+rpx2+qx+rAx+B(px2+qx+r)kpx2+qx+rA1x+B1,px2+qx+rA2x+B2,,px2+qx+rAkx+Bk

6.6.定积分的计算

6.6.1.对称区间上的积分问题
  1. f ( x ) f(x) f(x)为奇函数 ⇒ ∫ − a a f ( x ) d x = 0 \Rightarrow \int_{-a}^af(x)\mathrm{d}x=0 aaf(x)dx=0
  2. f ( x ) f(x) f(x)为偶函数 ⇒ ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \Rightarrow\int_{-a}^af(x)\mathrm{d}x=2\int_0^af(x)\mathrm{d}x aaf(x)dx=20af(x)dx
  3. ∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int_{-a}^af(x)\mathrm{d}x=\int_0^a[f(x)+f(-x)]\mathrm{d}x aaf(x)dx=0a[f(x)+f(x)]dx
6.6.2.周期性下的积分问题

f ( x + T ) = f ( x ) ⇒ { ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x ∫ a a + n T f ( x ) d x = n ∫ 0 T f ( x ) d x f(x+T)=f(x)\Rightarrow\begin{cases}\int_a^{a+T}f(x)\mathrm{d}x=\int_0^Tf(x)\mathrm{d}x\\\int_a^{a+nT}f(x)\mathrm{d}x=n\int_0^Tf(x)\mathrm{d}x\end{cases} f(x+T)=f(x){aa+Tf(x)dx=0Tf(x)dxaa+nTf(x)dx=n0Tf(x)dx

6.6.3.区间再现下的积分问题

区间再现公式: ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_a^bf(x)\mathrm{d}x=\int_a^bf(a+b-x)\mathrm{d}x abf(x)dx=abf(a+bx)dx

  1. ∫ a b f ( x ) d x = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x \int_a^bf(x)\mathrm{d}x=\frac{1}{2}\int_a^b[f(x)+f(a+b-x)]\mathrm{d}x abf(x)dx=21ab[f(x)+f(a+bx)]dx
  2. ∫ a b f ( x ) d x = ∫ a a + b 2 [ f ( x ) + f ( a + b − x ) ] d x \int_a^bf(x)\mathrm{d}x=\int_a^{\frac{a+b}{2}}[f(x)+f(a+b-x)]\mathrm{d}x abf(x)dx=a2a+b[f(x)+f(a+bx)]dx
  3. ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x = π ∫ 0 π 2 f ( sin ⁡ x ) d x \int_0^\pi xf(\sin x)\mathrm{d}x=\frac{\pi}{2}\int_0^\pi f(\sin x)\mathrm{d}x=\pi\int_0^\frac{\pi}{2}f(\sin x)\mathrm{d}x 0πxf(sinx)dx=2π0πf(sinx)dx=π02πf(sinx)dx
  4. ∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x \int_0^\frac{\pi}{2}f(\sin x)\mathrm{d}x=\int_0^\frac{\pi}{2}f(\cos x)\mathrm{d}x 02πf(sinx)dx=02πf(cosx)dx
  5. ∫ 0 π 2 f ( sin ⁡ x , cos ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x , sin ⁡ x ) d x \int_0^\frac{\pi}{2}f(\sin x,\cos x)\mathrm{d}x=\int_0^\frac{\pi}{2}f(\cos x,\sin x)\mathrm{d}x 02πf(sinx,cosx)dx=02πf(cosx,sinx)dx
6.6.4.华里士公式(点火公式)
  1. ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋅ . . . ⋅ 2 3 ⋅ 1 , n 为大于 1 的奇数 n − 1 n ⋅ n − 3 n − 2 ⋅ . . . ⋅ 1 2 ⋅ π 2 , n 为正偶数 \int_0^{\frac{\pi}{2}}\sin^nx\mathrm{d}x=\int_0^{\frac{\pi}{2}}\cos^nx\mathrm{d}x=\begin{cases}\frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdot...\cdot\frac{2}{3}\cdot1,n为大于1的奇数\\\frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdot...\cdot\frac{1}{2}\cdot\frac{\pi}{2},n为正偶数\end{cases} 02πsinnxdx=02πcosnxdx={nn1n2n3...321,n为大于1的奇数nn1n2n3...212π,n为正偶数

  2. ∫ 0 π sin ⁡ n x d x = 2 ∫ 0 π 2 sin ⁡ n x d x       ( n 为正整数 ) \int_0^\pi\sin^nx\mathrm{d}x=2\int_0^{\frac{\pi}{2}}\sin^nx\mathrm{d}x~~~~~(n为正整数) 0πsinnxdx=202πsinnxdx     (n为正整数)

  3. ∫ 0 π cos ⁡ n x d x = { 0       ( n 为正奇数 ) 2 ∫ 0 π 2 cos ⁡ n x d x        ( n 为正偶数 ) \int_0^\pi\cos^nx\mathrm{d}x=\begin{cases}0~~~~~(n为正奇数)\\2\int_0^{\frac{\pi}{2}}\cos^nx\mathrm{d}x~~~~~~(n为正偶数)\end{cases} 0πcosnxdx={0     (n为正奇数)202πcosnxdx      (n为正偶数)

  4. ∫ 0 2 π sin ⁡ n x d x = ∫ 0 2 π cos ⁡ n x d x = { 0      ( n 为正奇数 ) 4 ∫ 0 π 2 sin ⁡ n x d x       ( n 为正偶数 ) \int_0^{2\pi}\sin^nx\mathrm{d}x=\int_0^{2\pi}\cos^nx\mathrm{d}x=\begin{cases}0~~~~(n为正奇数)\\4\int_0^{\frac{\pi}{2}}\sin^nx\mathrm{d}x~~~~~(n为正偶数)\end{cases} 02πsinnxdx=02πcosnxdx={0    (n为正奇数)402πsinnxdx     (n为正偶数)

6.7.含 sec ⁡ x \sec x secx tan ⁡ x \tan x tanx的积分计算

∫ tan ⁡ n x sec ⁡ m x d x ( n , m 均为非负整数 ) \int \tan^nx\sec^mx\mathrm{d}x(n,m均为非负整数) tannxsecmxdx(n,m均为非负整数)

m m m为大于0的偶数,利用 ( tan ⁡ x ) ′ = sec ⁡ 2 x , sec ⁡ 2 x = tan ⁡ 2 x + 1 (\tan x)'=\sec^2x,\sec^2x=\tan^2x+1 (tanx)=sec2x,sec2x=tan2x+1凑微分.

n , m n,m n,m均为奇数时,利用 ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x , tan ⁡ 2 x = sec ⁡ 2 x − 1 (\sec x)'=\sec x\tan x,\tan^2x=\sec^2x-1 (secx)=secxtanx,tan2x=sec2x1凑微分.

m = 0 m=0 m=0时,利用 tan ⁡ 2 x = sec ⁡ 2 x − 1 \tan^2x=\sec^2x-1 tan2x=sec2x1降次.

7.几何应用

7.1.平面图形的面积

  1. 曲线 y = y 1 ( x ) 与 y = y 2 ( x ) 及 x = 1 , x = b ( a < b ) 所围成的平面图形的面积 曲线y=y_1(x)与y=y_2(x)及x=1,x=b(a<b)所围成的平面图形的面积 曲线y=y1(x)y=y2(x)x=1,x=b(a<b)所围成的平面图形的面积

    S = ∫ a b ∣ y 1 ( x ) − y 2 ( x ) ∣ d x S=\int_a^b|y_1(x)-y_2(x)|\mathrm{d}x S=aby1(x)y2(x)dx

  2. 曲线 r = r 1 ( θ ) 与 r = r 2 ( θ ) 与两射线 θ = α 与 θ = β ( 0 < β − α ⩽ 2 π ) 所围成的曲边扇形的面积 曲线r=r_1(\theta)与r=r_2(\theta)与两射线\theta=\alpha与\theta=\beta(0<\beta-\alpha\leqslant2\pi)所围成的曲边扇形的面积 曲线r=r1(θ)r=r2(θ)与两射线θ=αθ=β(0<βα2π)所围成的曲边扇形的面积

    S = 1 2 ∫ α β ∣ r 1 2 ( θ ) − r 2 2 ( θ ) ∣ d θ S=\frac{1}{2}\int_\alpha^\beta|r_1^2(\theta)-r_2^2(\theta)|\mathrm{d}\theta S=21αβr12(θ)r22(θ)dθ

7.2.旋转体的体积

( 1 ) 设平面曲线 L : y = f ( x ) , a ⩽ x ⩽ b , 且 f ( x ) 可导 . 设定直线 L 0 : A x + B y + C = 0 , 且过 L 0 的任一条垂线与 L 至多有一个交点 , 则 L 绕 L 0 旋转一周所得旋转体体积为 V = π ( A 2 + B 2 ) 3 2 ∫ a b [ A x + B f ( x ) + C ] 2 ∣ A f ′ ( x ) − B ∣ d x ( 2 ) 平面图形 D = ( r , θ ) ∣ 0 ⩽ r ⩽ r ( θ ) , θ ∈ [ α , β ] ⊂ [ 0 , π ] , 则 D 绕极轴旋转一周所得旋转体体积为 V = 2 3 π ∫ α β r 3 ( θ ) sin ⁡ θ d θ \begin{aligned} (1)&设平面曲线L:y=f(x),a\leqslant x\leqslant b,且f(x)可导. \\&设定直线L_0:Ax+By+C=0,且过L_0的任一条垂线与L至多有一个交点,则L绕L_0旋转一周所得旋转体体积为 \\&V=\frac{\pi}{(A^2+B^2)^\frac{3}{2}}\int_a^b[Ax+Bf(x)+C]^2|Af'(x)-B|\mathrm{d}x \\(2)&平面图形D={(r,\theta)|0\leqslant r\leqslant r(\theta),\theta\in[\alpha,\beta]\subset[0,\pi]},则D绕极轴旋转一周所得旋转体体积为 \\&V=\frac{2}{3}\pi\int_\alpha^\beta r^3(\theta)\sin\theta\mathrm{d}\theta \end{aligned} (1)(2)设平面曲线L:y=f(x),axb,f(x)可导.设定直线L0:Ax+By+C=0,且过L0的任一条垂线与L至多有一个交点,LL0旋转一周所得旋转体体积为V=(A2+B2)23πab[Ax+Bf(x)+C]2Af(x)Bdx平面图形D=(r,θ)∣0rr(θ),θ[α,β][0,π],D绕极轴旋转一周所得旋转体体积为V=32παβr3(θ)sinθdθ

  1. 曲线 y = y ( x ) 与 x = a , x = b ( a < b ) 及 x 轴围成的曲边梯形绕 x 轴旋转一周所得到的旋转体的体积 曲线y=y(x)与x=a,x=b(a<b)及x轴围成的曲边梯形绕x轴旋转一周所得到的旋转体的体积 曲线y=y(x)x=a,x=b(a<b)x轴围成的曲边梯形绕x轴旋转一周所得到的旋转体的体积

    V = π ∫ a b y 2 ( x ) d x V=\pi\int_a^b y^2(x)\mathrm{d}x V=πaby2(x)dx

  2. 曲线 y = y 1 ( x ) ⩾ 0 与 y = y 2 ( x ) ⩾ 0 与 x = a , x = b ( a < b ) 所轴围成的平面图形绕 x 轴旋转一周所得到的旋转体的体积 曲线y=y_1(x)\geqslant0与y=y_2(x)\geqslant0与x=a,x=b(a<b)所轴围成的平面图形绕x轴旋转一周所得到的旋转体的体积 曲线y=y1(x)0y=y2(x)0x=a,x=b(a<b)所轴围成的平面图形绕x轴旋转一周所得到的旋转体的体积

    V = π ∫ a b ∣ y 1 2 ( x ) − y 2 2 ( x ) ∣ d x V=\pi\int_a^b|y_1^2(x)-y_2^2(x)|\mathrm{d}x V=πaby12(x)y22(x)dx

  3. 曲线 y = y ( x ) 与 x = a , x = b ( a < b ) 及 x 轴围成的曲边梯形绕 y 轴旋转一周所得到的旋转体的体积 曲线y=y(x)与x=a,x=b(a<b)及x轴围成的曲边梯形绕y轴旋转一周所得到的旋转体的体积 曲线y=y(x)x=a,x=b(a<b)x轴围成的曲边梯形绕y轴旋转一周所得到的旋转体的体积

    V = 2 π ∫ a b x ∣ y ( x ) ∣ d x V=2\pi\int_a^b x|y(x)|\mathrm{d}x V=2πabxy(x)dx

  4. 曲线 y = y 1 ( x ) ⩾ 0 与 y = y 2 ( x ) ⩾ 0 与 x = a , x = b ( a < b ) 所围成的图形绕 y 轴旋转一周所得到的旋转体的体积 曲线y=y_1(x)\geqslant0与y=y_2(x)\geqslant0与x=a,x=b(a<b)所围成的图形绕y轴旋转一周所得到的旋转体的体积 曲线y=y1(x)0y=y2(x)0x=a,x=b(a<b)所围成的图形绕y轴旋转一周所得到的旋转体的体积

    V = 2 π ∫ a b x ∣ y 1 ( x ) − y 2 ( x ) ∣ d x V=2\pi\int_a^bx|y_1(x)-y_2(x)|\mathrm{d}x V=2πabxy1(x)y2(x)dx

7.3.函数的平均值

x ∈ [ a , b ] , 函数 y ( x ) 在 [ a , b ] 上的平均值 y ‾ = 1 b − a ∫ a b y ( x ) d x x\in[a,b],函数y(x)在[a,b]上的平均值\overline{y}=\frac{1}{b-a}\int_a^by(x)\mathrm{d}x x[a,b],函数y(x)[a,b]上的平均值y=ba1aby(x)dx

7.4.形心坐标公式

x ‾ = ∬ D x d σ ∬ D d σ                 y ‾ = ∬ D y d σ ∬ D d σ \overline{x}=\frac{\iint\limits_{D}x\mathrm{d}\sigma}{\iint\limits_{D}\mathrm{d}\sigma}~~~~~~~~~~~~~~~\overline{y}=\frac{\iint\limits_{D}y\mathrm{d}\sigma}{\iint\limits_{D}\mathrm{d}\sigma} x=DdσDxdσ               y=DdσDydσ

7.5.平面曲线的弧长

{ 直角坐标方程—— s = ∫ a b 1 + [ y ′ ( x ) ] 2 d x 参数方程—— s = ∫ α β [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t 极坐标方程—— s = ∫ α β [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ \begin{cases}直角坐标方程——s=\int_a^b\sqrt{1+{[y'(x)]}^2}\mathrm{d}x\\参数方程——s=\int_\alpha^\beta\sqrt{{[x'(t)]}^2+{[y'(t)]}^2}\mathrm{d}t\\极坐标方程——s=\int_\alpha^\beta\sqrt{{[r(\theta)]}^2+{[r'(\theta)]}^2}\mathrm{d}\theta\end{cases} 直角坐标方程——s=ab1+[y(x)]2 dx参数方程——s=αβ[x(t)]2+[y(t)]2 dt极坐标方程——s=αβ[r(θ)]2+[r(θ)]2 dθ

7.6.旋转曲面的面积(侧面积)

  1. 曲线 y = y ( x ) 在 [ a , b ] 上的曲线弧段绕 x 轴旋转一周所得的的旋转曲面的面积 曲线y=y(x)在[a,b]上的曲线弧段绕x轴旋转一周所得的的旋转曲面的面积 曲线y=y(x)[a,b]上的曲线弧段绕x轴旋转一周所得的的旋转曲面的面积

    S = 2 π ∫ a b ∣ y ( x ) ∣ 1 + [ y ′ ( x ) ] 2 d x S=2\pi\int_a^b|y(x)|\sqrt{1+{[y'(x)]}^2}\mathrm{d}x S=2πaby(x)1+[y(x)]2 dx

  2. 曲线 x = x ( t ) , y = y ( t ) ( α ⩽ t ⩽ β , x ′ ( t ) ≠ 0 ) 在 [ α , β ] 上的曲线弧段绕 x 轴旋转一周所得的旋转曲面的面积 曲线x=x(t),y=y(t)(\alpha\leqslant t\leqslant\beta,x'(t)\ne0)在[\alpha,\beta]上的曲线弧段绕x轴旋转一周所得的旋转曲面的面积 曲线x=x(t),y=y(t)(αtβ,x(t)=0)[α,β]上的曲线弧段绕x轴旋转一周所得的旋转曲面的面积

    S = 2 π ∫ α β ∣ y ( t ) ∣ [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t S=2\pi\int_\alpha^\beta|y(t)|\sqrt{{{[x'(t)]}^2}+{[y'(t)]}^2}\mathrm{d}t S=2παβy(t)[x(t)]2+[y(t)]2 dt

  3. 曲线 r = r ( θ ) 在区间 [ α , β ] 上的曲线弧段绕 x 轴旋转一周所得到的旋转曲面的面积 曲线r=r(\theta)在区间[\alpha,\beta]上的曲线弧段绕x轴旋转一周所得到的旋转曲面的面积 曲线r=r(θ)在区间[α,β]上的曲线弧段绕x轴旋转一周所得到的旋转曲面的面积

    S = 2 π ∫ α β ∣ r ( θ ) sin ⁡ θ ∣ [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ S=2\pi\int_\alpha^\beta|r(\theta)\sin\theta|\sqrt{[r(\theta)]^2+[r'(\theta)]^2}\mathrm{d}\theta S=2παβr(θ)sinθ[r(θ)]2+[r(θ)]2 dθ

7.7.平行截面面积为已知的立体体积

V = ∫ a b A ( x ) d x V=\int_a^bA(x)\mathrm{d}x V=abA(x)dx

8.物理应用

8.1.位移大小与总路程

位移: ∫ t 1 t 2 v ( t ) d t \int_{t_1}^{t_2}v(t)\mathrm{d}t t1t2v(t)dt

总路程: ∫ t 1 t 2 ∣ v ( t ) ∣ d t \int_{t_1}^{t_2}|v(t)|\mathrm{d}t t1t2v(t)dt

8.2.变力沿直线做功

W = ∫ a b F ( x ) d x W=\int_a^bF(x)\mathrm{d}x W=abF(x)dx

8.3.抽水做功

W = ρ g ∫ a b x A ( x ) d x          A ( x ) 为水平截面面积 W=\rho g\int_a^bxA(x)\mathrm{d}x~~~~~~~~A(x)为水平截面面积 W=ρgabxA(x)dx        A(x)为水平截面面积

8.4.静水压力

P = ρ g ∫ a b x [ f ( x ) − h ( x ) ] d x P=\rho g\int_a^b x[f(x)-h(x)]\mathrm{d}x P=ρgabx[f(x)h(x)]dx

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值