【考研数学一·高数(2)】函数极限与连续

2.函数极限与连续

2.1.函数极限的定义

lim ⁡ x → ⋅ f ( x ) = A ⇔ ∀ ϵ > 0 , 当 x → ⋅ 时 , ∣ f ( x ) − A ∣ < ϵ \lim\limits_{x\to\cdot}f(x)=A\Leftrightarrow\forall\epsilon>0,当x\to\cdot时,|f(x)-A|<\epsilon xlimf(x)=Aϵ>0,x,f(x)A<ϵ

2.2.函数极限的性质

  • lim ⁡ x → ⋅ f ( x ) \lim\limits_{x\to\cdot}f(x) xlimf(x)存在时
  1. (是常数) lim ⁡ x → ⋅ f ( x ) = A \lim\limits_{x\to\cdot}f(x)=A xlimf(x)=A

  2. (唯一性) A A A唯一:左极限=右极限

  3. (局部有界性)当 x → ⋅ x\to\cdot x时, ∃ M > 0 \exists M>0 M>0, ∣ f ( x ) ∣ ⩽ M |f(x)|\leqslant M f(x)M

  4. (局部保号性)当 x → ⋅ x\to\cdot x时,若 A > 0 A>0 A>0,则 f ( x ) > 0 f(x)>0 f(x)>0;若 x → ⋅ x\to\cdot x时, f ( x ) ⩾ 0 f(x)\geqslant0 f(x)0,则 A ⩾ 0 A\geqslant0 A0

  5. (等式脱帽法) f ( x ) = A + α f(x)=A+\alpha f(x)=A+α,其中 lim ⁡ x → ⋅ α = 0 \lim\limits_{x\to\cdot}\alpha=0 xlimα=0

  • { 脱帽法 : lim ⁡ x → ⋅ f ( x ) > 0 ⇒ f ( x ) > 0    ( < ) 戴帽法 : f ( x ) ⩾ 0 ⇒ lim ⁡ x → ⋅ f ( x ) ⩾ 0    ( ⩽ ) \begin{cases}脱帽法:\lim\limits_{x\to\cdot}f(x)>0\Rightarrow f(x)>0~~(<)\\戴帽法:f(x)\geqslant0\Rightarrow\lim\limits_{x\to\cdot}f(x)\geqslant0~~(\leqslant)\end{cases} 脱帽法:xlimf(x)>0f(x)>0  (<)戴帽法:f(x)0xlimf(x)0  ()

2.3.函数极限的计算

2.3.1.化简

2.3.1.1.等价无穷小替换
  1. 普通函数型

  2. 复合函数型

    x → 0 x\to0 x0时, f ( x ) ∼ a x m f(x)\sim ax^m f(x)axm, g ( x ) ∼ b x n g(x)\sim bx^n g(x)bxn, a b ≠ 0 ab\ne0 ab=0, m m m, n n n为正整数,则 f [ g ( x ) ] ∼ a b m x m n f[g(x)]\sim ab^mx^{mn} f[g(x)]abmxmn.

  3. 变上限积分型

    x → 0 x\to0 x0时, f ( x ) ∼ a x m f(x)\sim ax^m f(x)axm, a ≠ 0 a\ne0 a=0, m m m为正整数,则 ∫ 0 x f ( t ) d t ∼ ∫ 0 x a t m d t \int_0^xf(t)\mathrm{d}t\sim\int_0^xat^m\mathrm{d}t 0xf(t)dt0xatmdt.

  4. 复合函数与变上限积分型

    x → 0 x\to0 x0时, f ( x ) ∼ a x m f(x)\sim ax^m f(x)axm, g ( x ) ∼ b x n g(x)\sim bx^n g(x)bxn, a b ≠ 0 ab\ne0 ab=0, m m m, n n n为正整数,则 ∫ 0 g ( x ) f ( t ) d t ∼ ∫ 0 b x n a t m d t \int_0^{g(x)}f(t)\mathrm{d}t\sim\int_0^{bx^n}at^m\mathrm{d}t 0g(x)f(t)dt0bxnatmdt.

  5. 推广型

    lim ⁡ x → 0 f ( x ) = A ≠ 0 \lim\limits_{x\to0}f(x)=A\ne0 x0limf(x)=A=0, lim ⁡ x → 0 h ( x ) = 0 \lim\limits_{x\to0}h(x)=0 x0limh(x)=0,且在 x → 0 x\to0 x0时, h ( x ) ≠ 0 h(x)\ne0 h(x)=0,则当 x → 0 x\to0 x0时, ∫ 0 h ( x ) f ( t ) d t ∼ A h ( x ) \int_0^{h(x)}f(t)\mathrm{d}t\sim Ah(x) 0h(x)f(t)dtAh(x).

  6. α \alpha α, β \beta β都是同一自变量变化过程 x → ⋅ x\to\cdot x下的无穷小量,且 α = o ( β ) ( x → ⋅ ) \alpha=o(\beta)(x\to\cdot) α=o(β)(x),则 { α + β ∼ β ( x → ⋅ ) α + β 与 β 在 x → ⋅ 时同号 \begin{cases}\alpha+\beta\sim\beta(x\to\cdot)\\\alpha+\beta与\beta在x\to\cdot时同号\end{cases} {α+ββ(x)α+ββx时同号

2.3.1.2.恒等变形

恒等变形 { 提取公因式 换元 通分 u v = e v ln ⁡ u 用公式 { 因式分解 分子有理化 用定理 { 牛顿 − 莱布尼茨公式 : f ( x ) − f ( x 0 ) = ∫ x 0 x f ′ ( t ) d t 拉格朗日中值定理 : f ( x ) − f ( x 0 ) = f ′ ( ξ ) ( x − x 0 ) 积分中值定理 : ∫ x 0 x f ( t ) d t = f ( ξ ) ( x − x 0 ) 泰勒公式 恒等变形 \begin{cases} 提取公因式 \\换元 \\通分 \\u^v=e^{v\ln u} \\用公式 \begin{cases} 因式分解 \\分子有理化 \end{cases} \\用定理 \begin{cases} 牛顿-莱布尼茨公式:f(x)-f(x_0)=\int_{x_0}^xf'(t)\mathrm{d}t \\拉格朗日中值定理:f(x)-f(x_0)=f'(\xi)(x-x_0) \\积分中值定理:\int_{x_0}^xf(t)\mathrm{d}t=f(\xi)(x-x_0) \\泰勒公式 \end{cases} \end{cases} 恒等变形 提取公因式换元通分uv=evlnu用公式{因式分解分子有理化用定理 牛顿莱布尼茨公式:f(x)f(x0)=x0xf(t)dt拉格朗日中值定理:f(x)f(x0)=f(ξ)(xx0)积分中值定理:x0xf(t)dt=f(ξ)(xx0)泰勒公式

2.3.1.3.及时提出极限存在且不为0的因式

2.3.2.洛必达法则

适用条件 { 0 0 型或 ∞ ∞ 型 分子、分母均可导 极限结果为 0 , c ( c ≠ 0 ) , ∞ 适用条件 \begin{cases} \frac{0}{0}型或\frac{\infty}{\infty}型 \\分子、分母均可导 \\极限结果为0,c(c\ne0),\infty \end{cases} 适用条件 00型或分子、分母均可导极限结果为0,c(c=0),

2.3.3.泰勒公式

2.3.3.1.常用公式
  • x → 0 x\to0 x0
  1. sin ⁡ x = x − x 3 3 ! + o ( x 3 ) \sin x=x-\frac{x^3}{3!}+o(x^3) sinx=x3!x3+o(x3)

  2. cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4) cosx=12!x2+4!x4+o(x4)

  3. arcsin ⁡ x = x + x 3 3 ! + o ( x 3 ) \arcsin x=x+\frac{x^3}{3!}+o(x^3) arcsinx=x+3!x3+o(x3)

  4. tan ⁡ x = x + x 3 3 + o ( x 3 ) \tan x=x+\frac{x^3}{3}+o(x^3) tanx=x+3x3+o(x3)

  5. arctan ⁡ x = x − x 3 3 + o ( x 3 ) \arctan x=x-\frac{x^3}{3}+o(x^3) arctanx=x3x3+o(x3)

  6. ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 3 ) \ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3) ln(1+x)=x2x2+3x3+o(x3)

  7. e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3) ex=1+x+2!x2+3!x3+o(x3)

  8. ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + o ( x 2 ) {(1+x)^\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+o(x^2) (1+x)α=1+αx+2!α(α1)x2+o(x2)

2.3.3.2.展开原则
  1. A B \frac{A}{B} BA ⇒ \Rightarrow 上下同阶

    若分母(分子)是 x x x k k k次幂,则应把分子(分母)展开到 x x x k k k次幂(全部 k k k次幂).

  2. A − B A-B AB ⇒ \Rightarrow 幂次最低

    A A A, B B B分别展开到它们系数不相等的 x x x的最低次幂.

2.4.无穷小与无穷大

2.4.1.无穷小比阶

lim ⁡ x → ⋅ f ( x ) g ( x ) = 0 0 { 0 ⇒ f ( x ) 是 g ( x ) 的高阶无穷小 c ≠ 0 ⇒ f ( x ) 是 g ( x ) 的同阶无穷小 ( c = 1 时等价无穷小 ) ∞ ⇒ f ( x ) 是 g ( x ) 的低阶无穷小 \lim\limits_{x\to\cdot}\frac{f(x)}{g(x)}\stackrel{\frac{0}{0}}{=} \begin{cases} 0\Rightarrow f(x)是g(x)的高阶无穷小 \\c\ne0\Rightarrow f(x)是g(x)的同阶无穷小(c=1时等价无穷小) \\\infty\Rightarrow f(x)是g(x)的低阶无穷小\end{cases} xlimg(x)f(x)=00 0f(x)g(x)的高阶无穷小c=0f(x)g(x)的同阶无穷小(c=1时等价无穷小)f(x)g(x)的低阶无穷小

2.4.2.常用等价无穷小

  • x → 0 x\to 0 x0
  1. sin ⁡ x ∼ x \sin x\sim x sinxx

  2. tan ⁡ x ∼ x \tan x\sim x tanxx

  3. arcsin ⁡ x ∼ x \arcsin x\sim x arcsinxx

  4. arctan ⁡ x ∼ x \arctan x\sim x arctanxx

  5. ln ⁡ ( 1 + x ) ∼ x \ln(1+x)\sim x ln(1+x)x

  6. e x − 1 ∼ x e^x-1\sim x ex1x

  7. a x − 1 ∼ x ln ⁡ a a^x-1\sim x\ln a ax1xlna

  8. 1 − cos ⁡ x ∼ 1 2 x 2 1-\cos x\sim \frac{1}{2}x^2 1cosx21x2

    1 − cos ⁡ α x ∼ α 2 x 2 1-\cos^\alpha x\sim\frac{\alpha}{2}x^2 1cosαx2αx2

  9. ( 1 + x ) α − 1 ∼ α x {(1+x)}^\alpha-1\sim\alpha x (1+x)α1αx

  10. ( 1 + x ) 1 x − e ∼ − e 2 x {(1+x)}^{\frac{1}{x}}-e\sim-\frac{e}{2}x (1+x)x1e2ex

  11. ln ⁡ ( x + 1 + x 2 ) ∼ x \ln(x+\sqrt{1+x^2})\sim x ln(x+1+x2 )x

2.4.3.等价无穷大

  • n → ∞ n\to\infty n
  1. 1 p + 2 p + . . . + n p ∼ n p + 1 p + 1 ( p > 0 ) 1^p+2^p+...+n^p\sim\frac{n^{p+1}}{p+1}(p>0) 1p+2p+...+npp+1np+1(p>0)

  2. 1 + 1 2 + . . . . + 1 n ∼ ln ⁡ n 1+\frac{1}{2}+....+\frac{1}{n}\sim\ln n 1+21+....+n1lnn

2.5.函数极限的存在性

  1. 夹逼准则

  2. 单调有界准则

2.6.两个重要极限

  • lim ⁡ x → 0 sin ⁡ x x = 1 \lim\limits_{x\to 0}\frac{\sin x}{x}=1 x0limxsinx=1

  • lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim\limits_{x\to\infty}{(1+\frac{1}{x})^x}=e xlim(1+x1)x=e

2.7.常用极限

  1. lim ⁡ n → ∞ a 1 n + a 2 n + . . . + a m n n = max ⁡ { a 1 , a 2 , . . . a m } ( a i > 0 ) \lim\limits_{n\to\infty}\sqrt[n]{a_1^n+a_2^n+...+a_m^n}=\max\{a_1,a_2,...a_m\}(a_i>0) nlimna1n+a2n+...+amn =max{a1,a2,...am}(ai>0)(夹逼准则)

  2. lim ⁡ n → ∞ n ! n n = 1 e \lim\limits_{n\to\infty}\frac{\sqrt[n]{n!}}{n}=\frac{1}{e} nlimnnn! =e1

    证明: lim ⁡ n → ∞ n ! n n = e lim ⁡ n → ∞ ( ln ⁡ n ! n − ln ⁡ n ) = e − 1 = 1 e \lim\limits_{n\to\infty}\frac{\sqrt[n]{n!}}{n}=e^{\lim\limits_{n\to\infty}(\ln\sqrt[n]{n!}-\ln n)}=e^{-1}=\frac{1}{e} nlimnnn! =enlim(lnnn! lnn)=e1=e1

    其中
    lim ⁡ n → ∞ ( ln ⁡ n ! n − ln ⁡ n ) = lim ⁡ n → ∞ ln ⁡ n ! − n ln ⁡ n n = lim ⁡ n → ∞ ln ⁡ n + ln ⁡ ( n − 1 ) + . . . + ln ⁡ 1 − n ln ⁡ n n = lim ⁡ n → ∞ ln ⁡ n n + ln ⁡ n − 1 n + . . . + ln ⁡ 1 n n = lim ⁡ n → ∞ 1 n ∑ i = 1 ∞ ln ⁡ i n = ∫ 0 1 ln ⁡ x d x = − 1 \begin{aligned} \lim\limits_{n\to\infty}(\ln\sqrt[n]{n!}-\ln n)&=\lim\limits_{n\to\infty}\frac{\ln n!-n\ln n}{n} \\&=\lim\limits_{n\to\infty}\frac{\ln n+\ln(n-1)+...+\ln 1-n\ln n}{n} \\&=\lim\limits_{n\to\infty}\frac{\ln\frac{n}{n}+\ln\frac{n-1}{n}+...+\ln\frac{1}{n}}{n} \\&=\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{i=1}^{\infty}\ln\frac{i}{n} \\&=\int_0^1\ln x\mathrm{d}x=-1 \end{aligned} nlim(lnnn! lnn)=nlimnlnn!nlnn=nlimnlnn+ln(n1)+...+ln1nlnn=nlimnlnnn+lnnn1+...+lnn1=nlimn1i=1lnni=01lnxdx=1

  3. lim ⁡ n → ∞ n n = 1 \lim\limits_{n\to\infty}\sqrt[n]{n}=1 nlimnn =1

2.8.连续与间断

2.8.1.研究位置

  • { 无定义点 → 必为间断点 分段函数的分段点 → 可能连续 , 也可能间断 \begin{cases}无定义点\to必为间断点\\分段函数的分段点\to可能连续,也可能间断\end{cases} {无定义点必为间断点分段函数的分段点可能连续,也可能间断

2.8.2.连续

  1. 内点处: lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0}f(x)=f(x_0) xx0limf(x)=f(x0)

  2. 端点处: [ a , b ] { lim ⁡ x → a + f ( x ) = f ( a ) , 右连续 lim ⁡ x → b − f ( x ) = f ( b ) , 左连续 [a,b]\begin{cases}\lim\limits_{x\to a^+}f(x)=f(a),右连续\\\lim\limits_{x\to b^-}f(x)=f(b),左连续\end{cases} [a,b] xa+limf(x)=f(a),右连续xblimf(x)=f(b),左连续

2.8.3.间断

  • 前提: f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0左、右两侧均有定义

{ 第一类间断点 { 跳跃间断点 : lim ⁡ x → x 0 + f ( x ) ≠ lim ⁡ x → x 0 − f ( x ) ( 存在 ) 可去间断点 : lim ⁡ x → x 0 + f ( x ) = lim ⁡ x → x 0 − f ( x ) ≠ f ( x 0 ) ( 存在 ) 第二类间断点 { 无穷间断点 : lim ⁡ x → x 0 + f ( x ) 和 lim ⁡ x → x 0 − f ( x ) 至少有一个不存在且为无穷大 振荡间断点 : lim ⁡ x → x 0 + f ( x ) 和 lim ⁡ x → x 0 − f ( x ) 不存在且振荡 … \begin{cases}第一类间断点\begin{cases}跳跃间断点:\lim\limits_{x\to x^+_0}f(x)\ne\lim\limits_{x\to x^-_0}f(x)(存在)\\可去间断点:\lim\limits_{x\to x^+_0}f(x)=\lim\limits_{x\to x^-_0}f(x)\ne f(x_0)(存在)\end{cases}\\第二类间断点\begin{cases}无穷间断点:\lim\limits_{x\to x^+_0}f(x)和\lim\limits_{x\to x^-_0}f(x)至少有一个不存在且为无穷大\\振荡间断点:\lim\limits_{x\to x^+_0}f(x)和\lim\limits_{x\to x^-_0}f(x)不存在且振荡\\\ldots\end{cases}\end{cases} 第一类间断点 跳跃间断点:xx0+limf(x)=xx0limf(x)(存在)可去间断点:xx0+limf(x)=xx0limf(x)=f(x0)(存在)第二类间断点 无穷间断点:xx0+limf(x)xx0limf(x)至少有一个不存在且为无穷大振荡间断点:xx0+limf(x)xx0limf(x)不存在且振荡

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值