【考研数学一·高数(10)】多元函数积分学

1.和式极限

  1. 二重积分
    • ∬ D f ( x , y ) d σ = lim ⁡ n → ∞ ∑ i = 1 n ∑ j = 1 n f ( a + b − a n i , c + d − c n j ) ⋅ b − a n ⋅ d − c n \iint\limits_Df(x,y)\mathrm{d}\sigma=\lim\limits_{n\to\infty}\sum\limits_{i=1}^n\sum\limits_{j=1}^nf(a+\frac{b-a}{n}i,c+\frac{d-c}{n}j)\cdot\frac{b-a}{n}\cdot\frac{d-c}{n} Df(x,y)dσ=nlimi=1nj=1nf(a+nbai,c+ndcj)nbandc
    • 其中 D = { ( x , y ) ∣ a ⩽ x ⩽ b , c ⩽ y ⩽ c } D=\{(x,y)|a\leqslant x\leqslant b,c\leqslant y\leqslant c\} D={(x,y)axb,cyc}
  2. 三重积分
    • ∭ Ω g ( x , y , z ) d v = lim ⁡ n → ∞ ∑ i = 1 n ∑ j = 1 n ∑ k = 1 n g ( a + b − a n i , c + d − c n j , e + f − e n k ) ⋅ b − a n ⋅ d − c n ⋅ f − e n \iiint\limits_\Omega g(x,y,z)\mathrm{d}v=\lim\limits_{n\to\infty}\sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{k=1}^ng(a+\frac{b-a}{n}i,c+\frac{d-c}{n}j,e+\frac{f-e}{n}k)\cdot\frac{b-a}{n}\cdot\frac{d-c}{n}\cdot\frac{f-e}{n} Ωg(x,y,z)dv=nlimi=1nj=1nk=1ng(a+nbai,c+ndcj,e+nfek)nbandcnfe
    • 其中 Ω = { ( x , y , z ) ∣ a ⩽ x ⩽ b , c ⩽ y ⩽ c , e ⩽ z ⩽ f } \Omega=\{(x,y,z)|a\leqslant x\leqslant b,c\leqslant y\leqslant c,e\leqslant z\leqslant f\} Ω={(x,y,z)axb,cyc,ezf}

2.换元法

  1. ∬ D x y f ( x , y ) d x d y = ∬ D u v f [ x ( u , v ) , y ( u , v ) ] ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ d u d v \iint\limits_{D_{xy}}f(x,y)\mathrm{d}x\mathrm{d}y=\iint\limits_{D_{uv}}f[x(u,v),y(u,v)]|\frac{\partial(x,y)}{\partial(u,v)}|\mathrm{d}u\mathrm{d}v Dxyf(x,y)dxdy=Duvf[x(u,v),y(u,v)](u,v)(x,y)dudv
    • ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ ≠ 0 |\frac{\partial(x,y)}{\partial(u,v)}|=\begin{vmatrix}\frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}\end{vmatrix}\ne0 (u,v)(x,y)= uxuyvxvy =0
  2. ∭ Ω x y z f ( x , y , w ) d x d y d z = ∭ Ω u v w f [ x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ] ∣ ∂ ( x , y , z ) ∂ ( u , v , w ) ∣ d u d v d w \iiint\limits_{\Omega_{xyz}}f(x,y,w)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iiint\limits_{\Omega_{uvw}}f[x(u,v,w),y(u,v,w),z(u,v,w)]|\frac{\partial(x,y,z)}{\partial(u,v,w)}|\mathrm{d}u\mathrm{d}v\mathrm{d}w Ωxyzf(x,y,w)dxdydz=Ωuvwf[x(u,v,w),y(u,v,w),z(u,v,w)](u,v,w)(x,y,z)dudvdw
    • ∣ ∂ ( x , y , z ) ∂ ( u , v , w ) ∣ = ∣ ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w ∣ ≠ 0 |\frac{\partial(x,y,z)}{\partial(u,v,w)}|=\begin{vmatrix}\frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}&\frac{\partial x}{\partial w}\\\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}&\frac{\partial y}{\partial w}\\\frac{\partial z}{\partial u}&\frac{\partial z}{\partial v}&\frac{\partial z}{\partial w}\end{vmatrix}\ne0 (u,v,w)(x,y,z)= uxuyuzvxvyvzwxwywz =0
  3. 直角坐标系 → \to 极坐标系: ∬ D f ( x , y ) d x d y = ∬ D f ( r cos ⁡ θ , r sin ⁡ θ ) r d r d θ \iint\limits_Df(x,y)\mathrm{d}x\mathrm{d}y=\iint\limits_Df(r\cos\theta,r\sin\theta)r\mathrm{d}r\mathrm{d}\theta Df(x,y)dxdy=Df(rcosθ,rsinθ)rdrdθ
  4. 球面坐标: ∭ Ω f ( x , y , z ) d x d x d z = ∭ Ω f ( r sin ⁡ φ cos ⁡ θ , r sin ⁡ φ sin ⁡ θ , r cos ⁡ φ ) r 2 sin ⁡ φ d θ d φ d r \iiint\limits_{\Omega}f(x,y,z)\mathrm{d}x\mathrm{d}x\mathrm{d}z=\iiint\limits_{\Omega}f(r\sin\varphi\cos\theta,r\sin\varphi\sin\theta,r\cos\varphi)r^2\sin\varphi\mathrm{d}\theta\mathrm{d}\varphi\mathrm{d}r Ωf(x,y,z)dxdxdz=Ωf(rsinφcosθ,rsinφsinθ,rcosφ)r2sinφdθdφdr

3.三大公式

3.1.格林公式

∮ L P ( x , y ) d x + Q ( x , y ) d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d σ \oint_LP(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y=\iint\limits_{D}(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})\mathrm{d}\sigma LP(x,y)dx+Q(x,y)dy=D(xQyP)dσ

3.2.斯托克斯公式

∮ Γ P d x + Q d y + R d z = ∬ Σ ∣ cos ⁡ α    cos ⁡ β    cos ⁡ γ ∂ ∂ x       ∂ ∂ y       ∂ ∂ z P         Q         R ∣ d S \oint_\Gamma P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z=\iint\limits_{\Sigma}\left|\begin{matrix}\cos\alpha~~\cos\beta~~\cos\gamma\\\frac{\partial}{\partial x}~~~~~\frac{\partial}{\partial y}~~~~~\frac{\partial}{\partial z}\\P~~~~~~~Q~~~~~~~R\end{matrix}\right|\mathrm{d}S ΓPdx+Qdy+Rdz=Σ cosα  cosβ  cosγx     y     zP       Q       R dS

3.3.高斯公式

∯ Σ P d y d z + Q d z d x + R d x d y = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v \oiint_\Sigma P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y=\iiint\limits_{\Omega}(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})\mathrm{d}v ΣPdydz+Qdzdx+Rdxdy=Ω(xP+yQ+zR)dv

4.两类积分的关系

  1. 曲线积分
    • ∫ L P d x + Q d y = ∫ L ( P cos ⁡ α + Q cos ⁡ β ) d s \int_LP\mathrm{d}x+Q\mathrm{d}y=\int_L(P\cos\alpha+Q\cos\beta)\mathrm{d}s LPdx+Qdy=L(Pcosα+Qcosβ)ds
  2. 曲面积分
    • ∬ Σ P d y d z + Q d z x + R d x d y = ∬ Σ ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d S \iint\limits_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{x}+R\mathrm{d}x\mathrm{d}y=\iint\limits_{\Sigma}(P\cos\alpha+Q\cos\beta+R\cos\gamma)\mathrm{d}S ΣPdydz+Qdzx+Rdxdy=Σ(Pcosα+Qcosβ+Rcosγ)dS

5.应用

5.1.重心(质心)与形心

ρ \rho ρ为常数时即形心

  1. 平面薄片

    x ‾ = ∬ D x ρ d σ ∬ D ρ d σ , y ‾ = ∬ D y ρ d σ ∬ D ρ d σ \overline{x}=\frac{\iint\limits_{D}x\rho\mathrm{d}\sigma}{\iint\limits_{D}\rho\mathrm{d}\sigma},\overline{y}=\frac{\iint\limits_{D}y\rho\mathrm{d}\sigma}{\iint\limits_{D}\rho\mathrm{d}\sigma} x=DρdσDxρdσ,y=DρdσDyρdσ

  2. 空间物体

    x ‾ = ∭ Ω x ρ d v ∭ Ω ρ d v , y ‾ = ∭ Ω y ρ d v ∭ Ω ρ d v , z ‾ = ∭ Ω z ρ d v ∭ Ω ρ d v \overline{x}=\frac{\iiint\limits_{\Omega}x\rho\mathrm{d}v}{\iiint\limits_{\Omega}\rho\mathrm{d}v},\overline{y}=\frac{\iiint\limits_{\Omega}y\rho\mathrm{d}v}{\iiint\limits_{\Omega}\rho\mathrm{d}v},\overline{z}=\frac{\iiint\limits_{\Omega}z\rho\mathrm{d}v}{\iiint\limits_{\Omega}\rho\mathrm{d}v} x=ΩρdvΩxρdv,y=ΩρdvΩyρdv,z=ΩρdvΩzρdv

  3. 光滑曲线

    x ‾ = ∫ L x ρ d x ∫ L ρ d x , y ‾ = ∫ L y ρ d y ∫ L ρ d y , z ‾ = ∫ L z ρ d z ∫ L ρ d z \overline{x}=\frac{\int_Lx\rho\mathrm{d}x}{\int_L\rho\mathrm{d}x},\overline{y}=\frac{\int_Ly\rho\mathrm{d}y}{\int_L\rho\mathrm{d}y},\overline{z}=\frac{\int_Lz\rho\mathrm{d}z}{\int_L\rho\mathrm{d}z} x=LρdxLxρdx,y=LρdyLyρdy,z=LρdzLzρdz

  4. 光滑曲面薄片

  5. x ‾ = ∬ Σ x ρ d S ∬ Σ ρ d S , y ‾ = ∬ Σ y ρ d S ∬ Σ ρ d S , z ‾ = ∬ Σ z ρ d S ∬ Σ ρ d S \overline{x}=\frac{\iint\limits_{\Sigma}x\rho\mathrm{d}S}{\iint\limits_{\Sigma}\rho\mathrm{d}S},\overline{y}=\frac{\iint\limits_{\Sigma}y\rho\mathrm{d}S}{\iint\limits_{\Sigma}\rho\mathrm{d}S},\overline{z}=\frac{\iint\limits_{\Sigma}z\rho\mathrm{d}S}{\iint\limits_{\Sigma}\rho\mathrm{d}S} x=ΣρdSΣxρdS,y=ΣρdSΣyρdS,z=ΣρdSΣzρdS

5.2.转动惯量

  1. 平面薄片

    I x = ∬ D y 2 ρ d σ , I y = ∬ D x 2 ρ d σ , I O = ∬ D ( x 2 + y 2 ) ρ d σ I_x=\iint\limits_{D}y^2\rho\mathrm{d}\sigma,I_y=\iint\limits_{D}x^2\rho\mathrm{d}\sigma,I_O=\iint\limits_{D}(x^2+y^2)\rho\mathrm{d}\sigma Ix=Dy2ρdσ,Iy=Dx2ρdσ,IO=D(x2+y2)ρdσ

  2. 空间物体

    I x = ∭ Ω ( y 2 + z 2 ) ρ d v , I y = ∭ Ω ( z 2 + x 2 ) ρ d v , I z = ∭ Ω ( x 2 + y 2 ) ρ d v , I O = ∭ Ω ( x 2 + y 2 + z 2 ) ρ d v I_x=\iiint\limits_{\Omega}(y^2+z^2)\rho\mathrm{d}v,I_y=\iiint\limits_{\Omega}(z^2+x^2)\rho\mathrm{d}v,I_z=\iiint\limits_{\Omega}(x^2+y^2)\rho\mathrm{d}v,I_O=\iiint\limits_{\Omega}(x^2+y^2+z^2)\rho\mathrm{d}v Ix=Ω(y2+z2)ρdv,Iy=Ω(z2+x2)ρdv,Iz=Ω(x2+y2)ρdv,IO=Ω(x2+y2+z2)ρdv

  3. 光滑曲线

    I x = ∫ L ( y 2 + z 2 ) ρ d s , I y = ∫ L ( z 2 + x 2 ) ρ d s , I z = ∫ L ( x 2 + y 2 ) ρ d s , I O = ∫ L ( x 2 + y 2 + z 2 ) ρ d s I_x=\int_L(y^2+z^2)\rho\mathrm{d}s,I_y=\int_L(z^2+x^2)\rho\mathrm{d}s,I_z=\int_L(x^2+y^2)\rho\mathrm{d}s,I_O=\int_L(x^2+y^2+z^2)\rho\mathrm{d}s Ix=L(y2+z2)ρds,Iy=L(z2+x2)ρds,Iz=L(x2+y2)ρds,IO=L(x2+y2+z2)ρds

  4. 光滑曲面薄片

    I x = ∬ Σ ( y 2 + z 2 ) ρ d S , I y = ∬ Σ ( z 2 + x 2 ) ρ d S , I z = ∬ Σ ( x 2 + y 2 ) ρ d v , I O = ∬ Σ ( x 2 + y 2 + z 2 ) ρ d S I_x=\iint\limits_{\Sigma}(y^2+z^2)\rho\mathrm{d}S,I_y=\iint\limits_{\Sigma}(z^2+x^2)\rho\mathrm{d}S,I_z=\iint\limits_{\Sigma}(x^2+y^2)\rho\mathrm{d}v,I_O=\iint\limits_{\Sigma}(x^2+y^2+z^2)\rho\mathrm{d}S Ix=Σ(y2+z2)ρdS,Iy=Σ(z2+x2)ρdS,Iz=Σ(x2+y2)ρdv,IO=Σ(x2+y2+z2)ρdS

5.3.引力

  1. 平面薄片

    F x = G m ∬ D ρ ( x − x 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d σ , F y = G m ∬ D ρ ( y − y 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d σ , F z = G m ∬ D ρ ( z − z 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d σ F_x=Gm\iint\limits_{D}\frac{\rho(x-x_0)}{{[(x-x_0)^2+(y-y_0)^2+z_0^2]}^{\frac{3}{2}}}\mathrm{d}\sigma,F_y=Gm\iint\limits_{D}\frac{\rho(y-y_0)}{{[(x-x_0)^2+(y-y_0)^2+z_0^2]}^{\frac{3}{2}}}\mathrm{d}\sigma,F_z=Gm\iint\limits_{D}\frac{\rho(z-z_0)}{{[(x-x_0)^2+(y-y_0)^2+z_0^2]}^{\frac{3}{2}}}\mathrm{d}\sigma Fx=GmD[(xx0)2+(yy0)2+z02]23ρ(xx0)dσ,Fy=GmD[(xx0)2+(yy0)2+z02]23ρ(yy0)dσ,Fz=GmD[(xx0)2+(yy0)2+z02]23ρ(zz0)dσ

  2. 空间物体

    F x = G m ∭ Ω ρ ( x − x 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 2 d v , F y = G m ∭ Ω ρ ( y − y 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 2 d v , F z = G m ∭ Ω ρ ( z − z 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 2 d v F_x=Gm\iiint\limits_{\Omega}\frac{\rho(x-x_0)}{{[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]}^{\frac{3}{2}}}\mathrm{d}v,F_y=Gm\iiint\limits_{\Omega}\frac{\rho(y-y_0)}{{[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]}^{\frac{3}{2}}}\mathrm{d}v,F_z=Gm\iiint\limits_{\Omega}\frac{\rho(z-z_0)}{{[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]}^{\frac{3}{2}}}\mathrm{d}v Fx=GmΩ[(xx0)2+(yy0)2+(zz0)2]23ρ(xx0)dv,Fy=GmΩ[(xx0)2+(yy0)2+(zz0)2]23ρ(yy0)dv,Fz=GmΩ[(xx0)2+(yy0)2+(zz0)2]23ρ(zz0)dv

  3. 光滑曲线

    F x = G m ∫ L ρ ( x − x 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 2 d s , F y = G m ∫ L ρ ( y − y 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 2 d s , F z = G m ∫ L ρ ( z − z 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 2 d s F_x=Gm\int_L\frac{\rho(x-x_0)}{{[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]}^{\frac{3}{2}}}\mathrm{d}s,F_y=Gm\int_L\frac{\rho(y-y_0)}{{[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]}^{\frac{3}{2}}}\mathrm{d}s,F_z=Gm\int_L\frac{\rho(z-z_0)}{{[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]}^{\frac{3}{2}}}\mathrm{d}s Fx=GmL[(xx0)2+(yy0)2+(zz0)2]23ρ(xx0)ds,Fy=GmL[(xx0)2+(yy0)2+(zz0)2]23ρ(yy0)ds,Fz=GmL[(xx0)2+(yy0)2+(zz0)2]23ρ(zz0)ds

  4. 光滑曲面薄片

    F x = G m ∬ Σ ρ ( x − x 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 2 d S , F y = G m ∬ Σ ρ ( y − y 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 2 d S , F z = G m ∬ Σ ρ ( z − z 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 2 d S F_x=Gm\iint\limits_{\Sigma}\frac{\rho(x-x_0)}{{[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]}^{\frac{3}{2}}}\mathrm{d}S,F_y=Gm\iint\limits_{\Sigma}\frac{\rho(y-y_0)}{{[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]}^{\frac{3}{2}}}\mathrm{d}S,F_z=Gm\iint\limits_{\Sigma}\frac{\rho(z-z_0)}{{[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]}^{\frac{3}{2}}}\mathrm{d}S Fx=GmΣ[(xx0)2+(yy0)2+(zz0)2]23ρ(xx0)dS,Fy=GmΣ[(xx0)2+(yy0)2+(zz0)2]23ρ(yy0)dS,Fz=GmΣ[(xx0)2+(yy0)2+(zz0)2]23ρ(zz0)dS

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值