【考研数学一·线性代数(6)】二次型

1.二次型及其标准形、规范形

1.1.二次型的矩阵表示

含有 n n n个变量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn的二次齐次函数
f ( x 1 , x 2 , ⋯   , x n ) = a 11 x 1 2 + a 22 x 2 2 + ⋯ + a n n x n 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + ⋯ + 2 a n − 1 , n x n − 1 x n f(x_1,x_2,\cdots,x_n)=a_{11}x_1^2+a_{22}x_2^2+\cdots+a_{nn}x_n^2+2a_{12}x_1x_2+2a_{13}x_1x_3+\cdots+2a_{n-1,n}x_{n-1}x_n f(x1,x2,,xn)=a11x12+a22x22++annxn2+2a12x1x2+2a13x1x3++2an1,nxn1xn
称为二次型.

j > i j>i j>i时,取 a j i = a i j a_{ji}=a_{ij} aji=aij,则 2 a i j x i x j = a i j j x i x j + a j i x i x j 2a_{ij}x_ix_j=a_{ijj}x_ix_j+a_jix_ix_j 2aijxixj=aijjxixj+ajixixj,故上式可写成
f ( x 1 , x 2 , ⋯   , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i x j f(x_1,x_2,\cdots,x_n)=\sum\limits_{i=1}^n\sum\limits_{j=1}^na_{ij}x_ix_j f(x1,x2,,xn)=i=1nj=1naijxixj
a i j a_{ij} aij为实数时, f f f称为实二次型.记
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] , x = [ x 1 x 2 ⋮ x n ] A=\begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n} \\a_{21}&a_{22}&\cdots&a_{2n} \\\vdots&\vdots&&\vdots \\a_{n1}&a_{n2}&\cdots&a_{nn} \end{bmatrix}, x=\begin{bmatrix} x_1\\x_2\\\vdots\\x_n \end{bmatrix} A= a11a21an1a12a22an2a1na2nann ,x= x1x2xn
则二次型 f f f可表示为 f = x T A x f=x^TAx f=xTAx,其中 A A A n n n阶实对称矩阵,即 A T = A A^T=A AT=A A A A称为二次型 f f f的矩阵 A A A的秩称为二次型 f f f的秩.

1.2.线性变换

对于 n n n元二次型 f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn),若令
{ x 1 = c 11 y 1 + c 12 y 2 + ⋯ + c 1 n y n x 2 = c 21 y 1 + c 22 y 2 + ⋯ + c 2 n y n ⋯ ⋯ x n = c n 1 y 1 + c n 2 y 2 + ⋯ + c n n y n         ( ∗ ) \begin{cases} x_1=c_{11}y_1+c_{12}y_2+\cdots+c_{1n}y_n \\x_2=c_{21}y_1+c_{22}y_2+\cdots+c_{2n}y_n \\\cdots\cdots \\x_n=c_{n1}y_1+c_{n2}y_2+\cdots+c_{nn}y_n \end{cases}~~~~~~~(*) x1=c11y1+c12y2++c1nynx2=c21y1+c22y2++c2nyn⋯⋯xn=cn1y1+cn2y2++cnnyn       ()

x = [ x 1 x 2 ⋮ x n ] , C = [ c 11 c 12 ⋯ a c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋮ c n 1 c n 2 ⋯ c n n ] , y = [ y 1 y 2 ⋮ y n ] x=\begin{bmatrix} x_1\\x_2\\\vdots\\x_n \end{bmatrix}, C=\begin{bmatrix} c_{11}&c_{12}&\cdots&ac_{1n} \\c_{21}&c_{22}&\cdots&c_{2n} \\\vdots&\vdots&&\vdots \\c_{n1}&c_{n2}&\cdots&c_{nn} \end{bmatrix}, y=\begin{bmatrix} y_1\\y_2\\\vdots\\y_n \end{bmatrix} x= x1x2xn ,C= c11c21cn1c12c22cn2ac1nc2ncnn ,y= y1y2yn
( ∗ ) (*) ()式可写为 x = C y x=Cy x=Cy ( ∗ ) (*) ()式称为线性变换.

  • C C C可逆,则称为可逆线性变换(配方法)
  • C C C为正交矩阵,则称为正交变换(正交变换法)

1.3.二次型的标准形、规范形

  • 定义
    • 标准形——形如 d 1 x 1 2 + d 2 x 2 2 + ⋯ + d n x n 2 d_1x_1^2+d_2x_2^2+\cdots+d_nx_n^2 d1x12+d2x22++dnxn2(只有平方项,没有交叉项)
    • 规范形——形如 x 1 2 + ⋯ + x p 2 − x p + 1 2 − ⋯ − x p + q 2 x_1^2+\cdots+x_p^2-x_{p+1}^2-\cdots-x_{p+q}^2 x12++xp2xp+12xp+q2(标准形中系数 d i d_i di取值范围为 { 1 , − 1 , 0 } \{1,-1,0\} {1,1,0}
    • 标准形一般不唯一,规范形在不考虑系数的顺序时是唯一的
  • 重要结论
    1. 任何二次型 f = x T A x f=x^TAx f=xTAx均可通过配方法(作可逆线性变换 x = C y x=Cy x=Cy)化为标准形 k 1 y 1 2 + k 2 y 2 2 + ⋯ + k n y n 2 k_1y_1^2+k_2y_2^2+\cdots+k_ny_n^2 k1y12+k2y22++knyn2规范形 y 1 2 + ⋯ + y p 2 − y p + 1 2 − ⋯ − y p + q 2 y_1^2+\cdots+y_p^2-y_{p+1}^2-\cdots-y_{p+q}^2 y12++yp2yp+12yp+q2
    2. 任何二次型 f = x T A x f=x^TAx f=xTAx可以通过正交变换 x = Q y x=Qy x=Qy化成标准形 λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 \lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 λ1y12+λ2y22++λnyn2
      • 此处 Q Q Q的列向量均是 A A A的特征向量 λ i \lambda_i λi均是A的特征值
    3. 惯性定理)无论选取什么样的可逆线性变换,将二次型化成标准形或规范形,其正项个数 p p p,负项个数 q q q都是不变的, p p p称为正惯性指数 q q q称为负惯性指数.
      • r ( A ) = p + q r(A)=p+q r(A)=p+q

2.配方法

  1. 含平方项
    • 将某个变量的平方项及==与其有关的混合项(全部)==合并在一起,配成一个完全平方项,重复直至配完.
  2. 不含平方项
    • 创造平方项,如含有 x 1 x 2 x_1x_2 x1x2项,令 { x 1 = y 1 + y 2 x 2 = y 1 − y 2 \begin{cases}x_1=y_1+y_2\\x_2=y_1-y_2\end{cases} {x1=y1+y2x2=y1y2,使 x 1 x 2 = y 1 2 − y 2 2 x_1x_2=y_1^2-y_2^2 x1x2=y12y22.
  3. 矩阵语言
    • 对实对称矩阵 A A A,必存在可逆矩阵 C C C,使得 C T A C = Λ C^TAC=\Lambda CTAC=Λ.

3.正交变换法

3.1.基本步骤

对于 f = x T A x f=x^TAx f=xTAx

  1. 在确定 A A A是实对称矩阵的条件下,求 A A A的特征值 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn
    • A A A不是实对称矩阵,令 B = 1 2 ( A + A T ) B=\frac{1}{2}(A+A^T) B=21(A+AT)
  2. A A A对应于特征值 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn的特征向量 ξ 1 , ξ 2 , ⋯   , ξ n \xi_1,\xi_2,\cdots,\xi_n ξ1,ξ2,,ξn
  3. ξ 1 , ξ 2 , ⋯   , ξ n \xi_1,\xi_2,\cdots,\xi_n ξ1,ξ2,,ξn正交化单位化 η 1 , η 2 , ⋯   , η n \eta_1,\eta_2,\cdots,\eta_n η1,η2,,ηn
  4. Q = [ η 1 , η 2 , ⋯   , η n ] Q=[\eta_1,\eta_2,\cdots,\eta_n] Q=[η1,η2,,ηn],则 Q Q Q为正交矩阵,且 Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ=Q^TAQ=\Lambda Q1AQ=QTAQ=Λ

于是 f = x T A x = x = Q y ( Q y ) T A ( Q y ) = y T Q T A Q y = y T Λ y f=x^TAx\stackrel{x=Qy}{=}(Qy)^TA(Qy)=y^TQ^TAQy=y^T\Lambda y f=xTAx=x=Qy(Qy)TA(Qy)=yTQTAQy=yTΛy

3.2.应用

  1. 反求参数, A A A f f f

  2. 最值问题

    • A A A的特征值大小排序为 λ 1 ⩽ λ 2 ⩽ ⋯ ⩽ λ n \lambda_1\leqslant\lambda_2\leqslant\cdots\leqslant\lambda_n λ1λ2λn
      • λ 1 x T x ⩽ x T A x ⩽ λ n x T x \lambda_1x^Tx\leqslant x^TAx\leqslant\lambda_nx^Tx λ1xTxxTAxλnxTx
      • x T x = 1 x^Tx=1 xTx=1,则 f min ⁡ = λ 1 , f max ⁡ = λ n f_{\min}=\lambda_1,f_{\max}=\lambda_n fmin=λ1,fmax=λn
  3. 几何应用

    • 二次曲面 f ( x 1 , x 2 , x 3 ) = 1 f(x_1,x_2,x_3)=1 f(x1,x2,x3)=1的类型

      λ 1 , λ 2 , λ 3 \lambda_1,\lambda_2,\lambda_3 λ1,λ2,λ3的符号 f ( x 1 , x 2 , x 3 ) = 1 f(x_1,x_2,x_3)=1 f(x1,x2,x3)=1
      3正椭球面
      2正1负单叶双曲面
      1正2负双叶双曲面
      2正1零椭圆柱面
      1正1负1零双曲柱面

4.实对称矩阵的合同

同阶实对称矩阵 A , B A,B A,B合同的判定

  • 用定义法: A ≃ B A\simeq B AB ⇔ \Leftrightarrow 存在可逆矩阵 C C C,使得 C T A C = B C^TAC=B CTAC=B
  • 用正负惯性指数: A ≃ B ⇔ p A = p B , q A = q B A\simeq B\Leftrightarrow p_A=p_B,q_A=q_B ABpA=pB,qA=qB
  • 用传递性: A ≃ C , C ≃ B ⇒ A ≃ B A\simeq C,C\simeq B\Rightarrow A\simeq B AC,CBAB
  • 用相似:相似必合同 { A ∼ B ⇒ A ≃ B A ≃ B ⇏ A ∼ B \begin{cases}A\sim B\Rightarrow A\simeq B\\A\simeq B\nRightarrow A\sim B\end{cases} {ABABABAB

5.正定二次型

n n n元二次型 f ( x 1 , x 2 , ⋯   , x n ) = x T A x f(x_1,x_2,\cdots,x_n)=x^TAx f(x1,x2,,xn)=xTAx.若对任意的 x = [ x 1 , x 2 , ⋯   , x n ] T ≠ 0 x=[x_1,x_2,\cdots,x_n]^T\ne0 x=[x1,x2,,xn]T=0,均有 x T A x > 0 x^TAx>0 xTAx>0,则称 f f f正定二次型,称二次型对应的矩阵 A A A正定矩阵.

  1. 前提—— A = A T A=A^T A=AT
  2. 充要条件
    • n n n元二次型 f = x T A x f=x^TAx f=xTAx正定 { ⇔ 对任意的 x ≠ 0 , 有 x T A x > 0 ⇔ A 的特征值 λ i > 0 ⇔ f 的正惯性指数 p = n ⇔ 存在可逆矩阵 D , 使得 A = D T D ⇔ A 与 E 合同 ⇔ A 的各阶顺序主子式均大于 0 \begin{cases}\Leftrightarrow对任意的x\ne0,有x^TAx>0\\\Leftrightarrow A的特征值\lambda_i>0\\\Leftrightarrow f的正惯性指数p=n\\\Leftrightarrow存在可逆矩阵D,使得A=D^TD\\\Leftrightarrow A与E合同\\\Leftrightarrow A的各阶顺序主子式均大于0\end{cases} 对任意的x=0,xTAx>0A的特征值λi>0f的正惯性指数p=n存在可逆矩阵D,使得A=DTDAE合同A的各阶顺序主子式均大于0
  3. 必要条件
    • a i i > 0 a_{ii}>0 aii>0
    • ∣ A ∣ > 0 |A|>0 A>0
  4. 重要结论
    • A A A正定 ⇒ A − 1 , A ∗ , A m , k A , C T A C \Rightarrow A^{-1},A^*,A^m,kA,C^TAC A1,A,Am,kA,CTAC均正定( m m m为正整数, C C C可逆)
    • A , B A,B A,B正定 ⇒ A + B \Rightarrow A+B A+B正定, [ A O O B ] \begin{bmatrix}A&O\\O&B\end{bmatrix} [AOOB]正定
    • A , B A,B A,B正定,则 A B AB AB正定 ⇔ A B = B A \Leftrightarrow AB=BA AB=BA
    • A A A正定且是正交矩阵 ⇒ A = E \Rightarrow A=E A=E
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值