绪论
AVL,嘿嘿,我的AVL······
AVL Trees
AVL树对于BST的优化,就相当于“Complete Heap”对于Heap为了保证左右子树“平衡”的优化,AVL树的定义在BST的定义上需要同一个根节点左右子树的height之差不大于1。
例如下面的这棵AVL树,所有左右子树的高度之差都不大于1。
Height of an AVL Tree
根据AVL树的定义和前面有关“Complete Heaps”的结论,所有基于完全二叉树的BST都是AVL树,所以高度为h的AVL树所包含的结点个数最多为2h+1-1。
还需要高度为h的AVL树所包含的结点个数的最小值来推理出AVL树结点个数n与高度h的关系,我们设高度为h的AVL树所包含的结点个数的最小值为F(h),显然有F(h)随着h值的增大而增大。
对于高度为h的AVL树,左右子树都为AVL树,至少有一个子树的高度为h-1。为了结点个数尽可能的少,高度为h-1的子树的结点个数为F(h-1),两颗子树的高度不大于1,另一颗子树的高度即为h-2,结点个数最少为F(h-2)