Lecture 14

本文详细介绍了AVL树的概念,它是BST的一种优化,确保左右子树高度差不超过1。讨论了AVL树的高度与节点数量的关系,并探讨了其插入和删除操作的平衡策略,包括LL型和LR型调整。最后,讨论了AVL树是否适合用数组存储的问题,指出其空间复杂度问题。
摘要由CSDN通过智能技术生成

绪论

AVL,嘿嘿,我的AVL······


AVL Trees

AVL树对于BST的优化,就相当于“Complete Heap”对于Heap为了保证左右子树“平衡”的优化,AVL树的定义在BST的定义上需要同一个根节点左右子树的height之差不大于1。

在这里插入图片描述

例如下面的这棵AVL树,所有左右子树的高度之差都不大于1。

在这里插入图片描述

Height of an AVL Tree

根据AVL树的定义和前面有关“Complete Heaps”的结论,所有基于完全二叉树的BST都是AVL树,所以高度为h的AVL树所包含的结点个数最多为2h+1-1。

还需要高度为h的AVL树所包含的结点个数的最小值来推理出AVL树结点个数n与高度h的关系,我们设高度为h的AVL树所包含的结点个数的最小值为F(h),显然有F(h)随着h值的增大而增大。

对于高度为h的AVL树,左右子树都为AVL树,至少有一个子树的高度为h-1。为了结点个数尽可能的少,高度为h-1的子树的结点个数为F(h-1),两颗子树的高度不大于1,另一颗子树的高度即为h-2,结点个数最少为F(h-2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值