数学分析(十一)-反常积分2-无穷积分3:一般无穷积分的敛散判别法

本文介绍了狄利克雷判别法和阿贝尔判别法在判断一般无穷积分的敛散性中的应用。通过证明和例子展示了如何使用这两个定理来确定无穷积分的收敛性质,特别是对于x趋于无穷大时的情况。
摘要由CSDN通过智能技术生成

这里来介绍两个判别一般无穷积分敛散的判别法.

定理 11.3 (狄利克雷判别法)

F ( u ) = ∫ a u f ( x ) d x F(u)=\int_{a}^{u} f(x) \mathrm{d} x F(u)=auf(x)dx [ a , + ∞ ) [a,+\infty) [a,+) 上有界, g ( x ) g(x) g(x) [ a , + ∞ ) [a,+\infty) [a,+) 上当 x → + ∞ x \rightarrow+\infty x+ 时单调趋于 0 , 则
∫ a + ∗ f ( x ) g ( x ) d x \int_{a}^{+*} f(x) g(x) \mathrm{d} x a+∗f(x)g(x)dx 收敛.


由条件设 ∣ ∫ a u f ( x ) d x ∣ ⩽ M , u ∈ [ a , + ∞ ) \left|\int_{a}^{u} f(x) \mathrm{d} x\right| \leqslant M, u \in[a,+\infty) auf(x)dx M,u[a,+). 任给 ε > 0 \varepsilon>0 ε>0, 由于 lim ⁡ x → + ∞ g ( x ) = 0 \lim \limits_{x \rightarrow+\infty} g(x)=0 x+limg(x)=0, 因此存在 G ⩾ a G \geqslant a Ga, 当 x > G x>G x>G 时, 有

∣ g ( x ) ∣ < ε 4 M . |g(x)|<\cfrac{\varepsilon}{4 M} . g(x)<4Mε.

又因 g g g 为单调函数, 利用积分第二中值定理 (定理 9.11) 的推论, 对于任何 u 2 > u 1 > u_{2}>u_{1}> u2>u1> G G G, 存在 ξ ∈ [ u 1 , u 2 ] \xi \in\left[u_{1}, u_{2}\right] ξ[u1,u2], 使得

∫ u 1 u 2 f ( x ) g ( x ) d x = g ( u 1 ) ∫ u 1 ξ f ( x ) d x + g ( u 2 ) ∫ ξ v 2 f ( x ) d x . \int_{u_{1}}^{u_{2}} f(x) g(x) \mathrm{d} x=g\left(u_{1}\right) \int_{u_{1}}^{\xi} f(x) \mathrm{d} x+g\left(u_{2}\right) \int_{\xi}^{v_{2}} f(x) \mathrm{d} x . u1u2f(x)g(x)dx=g(u1)u1ξf(x)dx+g(u2)ξv2f(x)dx.

于是有

∣ ∫ u j u 2 f ( x ) g ( x ) d x ∣ ⩽ ∣ g ( u 1 ) ∣ ⋅ ∣ ∫ u 1 ξ f ( x ) d x ∣ + ∣ g ( u 2 ) ∣ ⋅ ∣ ∫ ξ u 2 f ( x ) d x ∣ = ∣ g ( u 1 ) ∣ ⋅ ∣ ∫ a ξ f ( x ) d x − ∫ a u 1 f ( x ) d x ∣ + ∣ g ( u 2 ) ∣ ⋅ ∣ ∫ a u 2 f ( x ) d x − ∫ a ξ f ( x ) d x ∣ < ε 4 M ⋅ 2 M + ε 4 M ⋅ 2 M = ε . \begin{aligned} \left|\int_{u_{j}}^{u_{2}} f(x) g(x) \mathrm{d} x\right| \leqslant & \left|g\left(u_{1}\right)\right| \cdot\left|\int_{u_{1}}^{\xi} f(x) \mathrm{d} x\right|+\left|g\left(u_{2}\right)\right| \cdot\left|\int_{\xi}^{u_{2}} f(x) \mathrm{d} x\right| \\ = & \left|g\left(u_{1}\right)\right| \cdot\left|\int_{a}^{\xi} f(x) \mathrm{d} x-\int_{a}^{u_{1}} f(x) \mathrm{d} x\right|+ \\ & \left|g\left(u_{2}\right)\right| \cdot\left|\int_{a}^{u_{2}} f(x) \mathrm{d} x-\int_{a}^{\xi} f(x) \mathrm{d} x\right| \\ & <\cfrac{\varepsilon}{4 M} \cdot 2 M+\cfrac{\varepsilon}{4 M} \cdot 2 M=\varepsilon . \end{aligned} uj

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值