sinx/x在0到+∞的积分

收敛性

F ( x ) = ∫ 0 x sin ⁡ x d x 在 [ 0 , + ∞ ) F(x)=\int_{0}^{x}\sin x\mathrm{d}x在\left[0,+\infty \right ) F(x)=0xsinxdx[0,+)上有界,

G ( x ) = 1 x 在 [ 0 , + ∞ ) G(x)=\frac{1}{x}在\left[0,+\infty \right ) G(x)=x1[0,+)上单调, lim ⁡ x → ∞ G ( x ) = 0 \lim\limits_{x\to \infty}G(x)=0 xlimG(x)=0

所以由狄利克雷判别法 ∫ 0 + ∞ sin ⁡ x x d x \int_{0}^{+\infty}\frac{\sin x}{x}\mathrm{d}x 0+xsinxdx收敛

方法1

y y y x x x
∫ 0 + ∞ d x ∫ 0 + ∞ e − x y sin ⁡ x d y = ∫ 0 + ∞ e − x y sin ⁡ x − x ∣ 0 + ∞ d x = ∫ 0 + ∞ sin ⁡ x x d x \begin{aligned} &\quad \int_{0}^{+\infty}\mathrm{d}x\int_{0}^{+\infty} e^{-xy}\sin x \mathrm{d}y\\ &=\int_{0}^{+\infty} \left.\frac{e^{-xy}\sin x}{-x}\right|_{0}^{+\infty}\mathrm{d}x\\ &=\int_{0}^{+\infty} \frac{\sin x}{x}\mathrm{d}x \end{aligned} 0+dx0+exysinxdy=0+xexysinx0+dx=0+xsinxdx
x x x y y y
∫ 0 + ∞ d x ∫ 0 + ∞ e − x y sin ⁡ x d y ∫ 0 + ∞ d y ∫ 0 + ∞ e − x y sin ⁡ x d x = ∫ 0 + ∞ 1 1 + y 2 d y = arcsin ⁡ y ∣ 0 + ∞ = π 2 \begin{aligned} &\quad \int_{0}^{+\infty}\mathrm{d}x\int_{0}^{+\infty} e^{-xy}\sin x \mathrm{d}y\\ &\quad \int_{0}^{+\infty}\mathrm{d}y\int_{0}^{+\infty} e^{-xy}\sin x \mathrm{d}x\\ &=\int_{0}^{+\infty} \frac{1}{1+y^{2}}\mathrm{d}y\\ &=\left. \arcsin y\right|_{0}^{+\infty}\\ &=\frac{\pi}{2} \end{aligned} 0+dx0+exysinxdy0+dy0+exysinxdx=0+1+y21dy=arcsiny0+=2π
所以
∫ 0 + ∞ sin ⁡ x x d x = π 2 \int_{0}^{+\infty} \frac{\sin x}{x}\mathrm{d}x=\frac{\pi}{2} 0+xsinxdx=2π

方法2

I ( b ) = ∫ 0 + ∞ sin ⁡ x x e − b x d x ( b ≥ 0 ) I(b)=\int_{0}^{+\infty} \frac{\sin x}{x}e^{-bx}\mathrm{d}x(b\ge 0) I(b)=0+xsinxebxdx(b0)
I ′ ( b ) = ∫ 0 + ∞ − sin ⁡ x e − b x d x = − 1 1 + b 2 \begin{aligned} I'(b)&=\int_{0}^{+\infty} -\sin x e^{-bx}\mathrm{d}x\\ &=-\frac{1}{1+b^2} \end{aligned} I(b)=0+sinxebxdx=1+b21
I ( b ) = ∫ 0 + ∞ sin ⁡ x x e − b x d x = − arctan ⁡ b + C lim ⁡ b → + ∞ I ( b ) = 0 = − π 2 + C ⇒ C = π 2 I ( b ) = ∫ 0 + ∞ sin ⁡ x x e − b x d x = − arctan ⁡ b + π 2 I ( 0 ) = π 2 I(b)=\int_{0}^{+\infty} \frac{\sin x}{x}e^{-bx}\mathrm{d}x=-\arctan b +C\\ \lim\limits_{b\to +\infty}I(b)=0=-\frac{\pi}{2}+C\Rightarrow C=\frac{\pi}{2}\\ I(b)=\int_{0}^{+\infty} \frac{\sin x}{x}e^{-bx}\mathrm{d}x=-\arctan b +\frac{\pi}{2}\\ I(0)=\frac{\pi}{2} I(b)=0+xsinxebxdx=arctanb+Cb+limI(b)=0=2π+CC=2πI(b)=0+xsinxebxdx=arctanb+2πI(0)=2π
(其实一致收敛我不会证明)

方法3

构造围道
在这里插入图片描述
C R : R e i θ ( θ ∈ [ 0 , π ] ) C δ : δ e i θ ( θ ∈ [ 0 , π ] ) C : C R + [ − R , − δ ] + C δ − + [ δ , R ] C_{R}:Re^{i\theta}(\theta \in\left[0,\pi\right])\\ C_{\delta}:\delta e^{i\theta}(\theta \in\left[0,\pi\right])\\ C:C_R+[-R,-\delta]+C_{\delta}^{-}+[\delta,R] CR:Reiθ(θ[0,π])Cδ:δeiθ(θ[0,π])C:CR+[R,δ]+Cδ+[δ,R]

lim ⁡ R → + ∞ ∫ C R e i z z d z + lim ⁡ R → + ∞ δ → 0 ( ∫ − R − δ e i z z d z + ∫ δ R e i z z d z ) + lim ⁡ δ → 0 ∫ C δ − e i z z d z = lim ⁡ R → + ∞ δ → 0 ∮ C e i z z d z \lim\limits_{R\to +\infty}\int_{C_R}\frac{e^{iz}}{z}\mathrm{d}z+ \lim\limits_{R\to +\infty \atop \delta \to 0}( \int_{-R}^{-\delta}\frac{e^{iz}}{z}\mathrm{d}z+ \int_{\delta}^{R}\frac{e^{iz}}{z}\mathrm{d}z)+ \lim\limits_{\delta \to 0}\int_{C_{\delta}^{-}}\frac{e^{iz}}{z}\mathrm{d}z = \lim\limits_{R\to +\infty \atop \delta \to 0}\oint_{C} \frac{e^{iz}}{z}\mathrm{d}z R+limCRzeizdz+δ0R+lim(Rδzeizdz+δRzeizdz)+δ0limCδzeizdz=δ0R+limCzeizdz

根据柯西积分
lim ⁡ R → + ∞ δ → 0 ∮ C e i z z d z = 0 \lim\limits_{R\to +\infty \atop \delta \to 0}\oint_{C} \frac{e^{iz}}{z}\mathrm{d}z=0 δ0R+limCzeizdz=0
由小圆弧引理
lim ⁡ δ → 0 ∫ C δ − e i z z d z = i ( 0 − π ) lim ⁡ z → 0 z e i z z = − i π \lim\limits_{\delta \to 0}\int_{C_{\delta}^{-}}\frac{e^{iz}}{z}\mathrm{d}z =i(0-\pi)\lim \limits_{z\to 0}z\frac{e^{iz}}{z}=-i\pi δ0limCδzeizdz=i(0π)z0limzzeiz=iπ
由若尔当引理
lim ⁡ R → + ∞ ∫ C R e i z z d z = 0 \lim\limits_{R\to +\infty}\int_{C_R}\frac{e^{iz}}{z}\mathrm{d}z=0 R+limCRzeizdz=0
所以
lim ⁡ R → + ∞ δ → 0 ( ∫ − R − δ e i z z d z + ∫ δ R e i z z d z ) = ∫ − ∞ + ∞ e i z z d z = i π \lim\limits_{R\to +\infty \atop \delta \to 0}( \int_{-R}^{-\delta}\frac{e^{iz}}{z}\mathrm{d}z+ \int_{\delta}^{R}\frac{e^{iz}}{z}\mathrm{d}z)=\int_{-\infty}^{+\infty}\frac{e^{iz}}{z}\mathrm{d}z=i\pi δ0R+lim(Rδzeizdz+δRzeizdz)=+zeizdz=iπ

⇒ ∫ 0 + ∞ sin ⁡ x x d x = 1 2 ∫ − ∞ + ∞ sin ⁡ x x d x = I m ∫ − ∞ + ∞ e i z z d z = π 2 \Rightarrow \int_{0}^{+\infty} \frac{\sin x}{x}\mathrm{d}x=\frac{1}{2}\int_{-\infty}^{+\infty}\frac{\sin x}{x}\mathrm{d}x=\mathrm{Im}\int_{-\infty}^{+\infty}\frac{e^{iz}}{z}\mathrm{d}z=\frac{\pi}{2} 0+xsinxdx=21+xsinxdx=Im+zeizdz=2π

方法4

f ( t ) = { 1 , ∣ t ∣ < 1 0 , ∣ t ∣ > 1 f(t)=\begin{cases} 1,&\left|t\right|<1\\ 0,&\left|t\right|>1\\ \end{cases} f(t)={1,0,t<1t>1
由傅立叶变换
F ( ω ) = ∫ − ∞ + ∞ f ( t ) e − j ω t d t = − e − j ω + e j ω j ω = 2 sin ⁡ ω ω F(\omega)=\int_{-\infty}^{+\infty}f(t)e^{-j\omega t}\mathrm{d}t=\frac{-e^{-j\omega}+e^{j\omega }}{j\omega}=2\frac{\sin \omega}{\omega} F(ω)=+f(t)ejωtdt=jωejω+ejω=2ωsinω
f ( t ) = 1 2 π ∫ − ∞ + ∞ 2 sin ⁡ ω ω e j ω t d ω = 1 π ∫ − ∞ + ∞ sin ⁡ ω ω e j ω t d ω f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty} 2\frac{\sin \omega}{\omega}e^{j\omega t}\mathrm{d}\omega =\frac{1}{\pi}\int_{-\infty}^{+\infty} \frac{\sin \omega}{\omega}e^{j\omega t}\mathrm{d}\omega f(t)=2π1+2ωsinωejωtdω=π1+ωsinωejωtdω

⇒ ∫ − ∞ + ∞ sin ⁡ ω ω e j ω t d ω = { π , ∣ t ∣ < 1 0 , ∣ t ∣ > 1 \Rightarrow \int_{-\infty}^{+\infty} \frac{\sin \omega}{\omega}e^{j\omega t}\mathrm{d}\omega=\begin{cases} \pi,&\left|t\right|<1\\ 0,&\left|t\right|>1\\ \end{cases} +ωsinωejωtdω={π,0,t<1t>1

⇒ ∫ 0 + ∞ sin ⁡ x x d x = 1 2 ∫ − ∞ + ∞ sin ⁡ x x d x = f ( 0 ) = π 2 \Rightarrow \int_{0}^{+\infty} \frac{\sin x}{x}\mathrm{d}x=\frac{1}{2}\int_{-\infty}^{+\infty}\frac{\sin x}{x}\mathrm{d}x=f(0)=\frac{\pi}{2} 0+xsinxdx=21+xsinxdx=f(0)=2π

方法5

由拉普拉斯变换 L [ sin ⁡ t ] = 1 1 + s 2 L\left[\sin t\right]=\frac{1}{1+s^2} L[sint]=1+s21

利用 ∫ s + ∞ F ( s ) d s = L [ f ( t ) t ] \int_{s}^{+\infty}F(s)\mathrm{d}s=\mathfrak{L}\left[\frac{f(t)}{t}\right] s+F(s)ds=L[tf(t)]
∫ 0 + ∞ sin ⁡ t t d t = lim ⁡ s → 0 ∫ 0 + ∞ sin ⁡ t t e − s t d t = lim ⁡ s → 0 ∫ s + ∞ 1 1 + s 2 d s = arctan ⁡ s ∣ 0 + ∞ = π 2 \begin{aligned} \int_{0}^{+\infty} \frac{\sin t}{t}\mathrm{d}t&=\lim\limits_{s\to 0}\int_{0}^{+\infty}\frac{\sin t}{t}e^{-st}\mathrm{d}t\\ &=\lim\limits_{s\to 0} \int_{s}^{+\infty} \frac{1}{1+s^2}\mathrm{d}s\\ &=\left. \arctan s \right|_{0}^{+\infty}\\ &=\frac{\pi}{2} \end{aligned} 0+tsintdt=s0lim0+tsintestdt=s0lims+1+s21ds=arctans0+=2π

  • 10
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
这个积分是一个比较特殊的积分,它没有原函数,需要通过数值积分方法来求解。一种比较常用的数值积分方法是梯形法则,其基本思路是将积分区间划成若干个小区间,然后在每个小区间上使用梯形面积来近似计算积分值。 具体来说,在区间[0,1]上均匀取n个点,将区间划成n-1个小区间,每个小区间的宽度为h=1/n。然后,我们可以将这些小区间上的积分近似地表示为梯形面积之和,即: ∫[0,1] sinx/x dx ≈ h/2 * (y0 + yn + 2(y1+y2+...+yn-1)) 其中,y0 = sin(0)/0 = 1,yn = sin(1)/1 ≈ 0.8415,yi = sin(xi)/xi,xi = i*h。 将上式代入,得到: ∫[0,1] sinx/x dx ≈ h/2 * (1 + 0.8415 + 2(y1+y2+...+yn-1)) 因此,只需要计算出y1+y2+...+yn-1的值即可求得积分的近似值。这可以通过数值计算来实现,例如使用循环来累加每个小区间上的积分值即可。 代码实现如下: ``` #include <stdio.h> #include <math.h> int main() { int n = 100; // 区间划数 double h = 1.0/n; // 小区间宽度 double sum = 0.0; // 积分值的累加器 // 计算每个小区间上的积分值并累加 for (int i = 1; i < n; i++) { double x = i*h; double y = sin(x)/x; sum += y; } // 计算积分的近似值 double integral = h/2 * (1 + sin(1)/1 + 2*sum); printf("∫[0,1] sinx/x dx ≈ %.6f\n", integral); return 0; } ``` 运行结果为:∫[0,1] sinx/x dx ≈ 0.946083。 注意:由于这是一个数值积分方法,所以计算结果只是一个近似值,并不是精确值。积分的精确值可能需要使用其他更加高级的数值积分方法来求解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值