llamafactory模型微调相关③训练遇到的一些小问题

训练效果差

个人感觉,深蓝和浅蓝的线最后没合并在一起,效果会很差。

建议:加大轮数。但听说加太大也不好,要找个中间值。
 

格式冲突引发了训练出错和聊天时格式报错

 1.训练出错
情况:训练出错

可能原因:
1.检查点有训练集,然后和现在训练的样本格式不一样。
2.再点一次开始可能就好了。

 2.聊天报错
情况:2个训练集放一起,然后chat,问问题返回格式出错
可能原因:
1.检查点训练集格式不统一

 

<think>好的,我现在需要帮助用户了解如何使用LLaMAFactory进行模型微调。首先,我需要回顾用户提供的引用内容,确保回答准确。用户提到了篇引用,其中引用[1]提到了微调参数保存在yaml文件中,引用[2]涉及启动webui服务和模型下载加速,引用[3]关于模型导出和启动服务。 首先,我应该整理LLaMAFactory的基本使用步骤,包括环境准备、配置参数、启动微调任务等。用户可能需要一个结构清晰的指南,所以分步骤会比较合适。比如,安装依赖、配置参数文件、启动WebUI等。 然后,需要确保覆盖用户可能关心的关键点,如参数配置的具体内容,如何选择微调方法(比如LoRA),模型下载加速的方法(如使用ModelScope),以及微调后的模型导出和服务部署。这些内容在引用中都有涉及,需要正确引用对应的部分。 另外,用户可能对实际操作中的命令和配置细节感兴趣,比如具体的Docker命令、环境变量设置等。需要从引用[2]中提取启动WebUI服务的步骤,包括进入容器和设置模型来源。引用[3]中的模型导出路径和vLLM启动服务的命令也需要包含进去。 同时,用户可能遇到常见问题,比如如何选择微调参数,如何处理数据格式,或者如何验证微调后的模型。这些问题应该在注意事项或常见问题部分提到,帮助用户避免常见错误。 最后,生成的相关问题需要围绕用户可能进一步探索的方向,例如参数调优、不同微调方法比较、性能优化等,确保覆盖用户后续可能的需求。 现在需要确保回答符合系统级指令,使用正确的中文,数学公式用$...$,独立公式用$$...$$。不过当前问题不涉及数学公式,所以可能不需要。同时,引用标识要自然地添加在引用的段落末尾,如[^1]、[^2]、[^3]。 总结回答的结构应该是:简介、步骤分点说明(环境准备、参数配置、启动微调等)、注意事项、相关问题和引用。需要保持语言简洁,步骤明确,引用正确。</think>### 如何使用LLaMAFactory进行模型微调 #### 1. 环境准备 - **安装依赖**:确保已安装Python(推荐3.8+)、Docker和LLaMAFactory相关库。通过以下命令安装LLaMAFactory: ```bash pip install llamafactory ``` - **容器部署**:使用Docker快速启动环境,进入容器并启动WebUI服务: ```bash docker compose exec llamafactory bash # 进入容器 llamafactory-cli webui # 启动WebUI[^2] ``` #### 2. 配置微调参数 - **参数文件**:在YAML配置文件中定义微调参数,包括: ```yaml model_name: "qwen-7b" # 基础模型名称 dataset: "custom_data.json" # 训练数据集路径 lora_rank: 8 # LoRA秩大小 learning_rate: 3e-4 # 学习率 max_steps: 1000 # 最大训练步数 ``` 参数直接影响训练效果,需根据任务需求调整[^1]。 #### 3. 数据准备 - 数据格式需为JSON或CSV,包含输入-输出对。示例: ```json {"input": "解释机器学习", "output": "机器学习是..."} {"input": "什么是神经网络?", "output": "神经网络由..."} ``` #### 4. 启动微调任务 - **通过WebUI操作**:在Web界面中上传配置文件和数据,选择微调方法(如LoRA或全参数微调),点击启动任务[^2]。 - **命令行启动**:若需加速模型下载,设置环境变量: ```bash export USE_MODELSCOPE_HUB=1 && llamafactory-cli webui # 从ModelScope下载模型[^2] ``` #### 5. 监控与验证 - 训练过程中可通过WebUI实时查看损失曲线和GPU利用率。 - 使用验证集评估模型性能,调整超参数(如学习率、批量大小)优化效果。 #### 6. 导出与部署 - **模型导出**:微调完成后,导出为可部署格式: ```bash llamafactory-cli export --model_path ./save/lora/ --output_dir ./export/ ``` - **服务启动**:使用vLLM部署API服务: ```bash python3 -m vllm.entrypoints.openapi.server --model /export/ --served-model-name qwen[^3] ``` --- ### 注意事项 1. **参数调优**:学习率过高可能导致训练不稳定,过低则收敛慢;LoRA秩过小可能欠拟合,过大可能过拟合[^1]。 2. **硬件资源**:7B模型全参数微调需至少24GB GPU显存,LoRA可降低至12GB。 3. **数据质量**:确保训练数据无噪声且覆盖任务场景,否则影响泛化能力。 --- ### 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值