基于混沌麻雀搜索算法的光伏MPPT控制MATLAB仿真

关注“电气仔推送”获得资料(专享优惠)

模型简介

此模型主要研究光伏系统MPPT控制,通过将麻雀搜索算法引入至MPPT控制策略中,在模型中通过改变光照强度,来验证算法引入的有效性。模型中包含麻雀搜索算法MPPT与混沌麻雀搜索算法MPPT,便于对比分析!

因为在使用原始SSA算法时,麻 雀种群的初始是随机产生的,这导致了麻雀种群多 样性的不佳,进而导致了算法全局搜索能力的下降 和收敛速度的不佳。所以根据一篇文献,在SSA中引入Tent 混沌映射函数可以用来增加原 始SSA算法种群多样性,增强算法跳出局部最优和全局搜索的能力。 Tent映射函数如式 所示。 

模型算法实现部分如下图所示

采用混沌函数,主要就是输出麻雀算法中的发现者、加入者以及危险者的输出位置,麻雀算法的其他程序均未做改变。如下图所示

至于模型本体,以光伏电池的输出端电压以及端电流作为SSA的输入,SSA直接输出PWM2信号,模型主体如下图所示。

仿真结果分析

SSA以及混沌SSA的发现者、加入者以及危险者的位置情况

上图中,左侧为原始麻雀算法中麻雀的位置情况,右侧为混沌麻雀算法中麻雀的位置情况。可见,经过改进的SSA算法,无论是在系统启动时,还是在光照强度发生变化时,其麻雀的位置都更靠近食物,位置更好,在模型中就能更快跟踪到光伏输出的最大功率。光伏输出功率如下图所示

如上图所示为两种算法的光伏输出功率波形,可见与上文分析的一致,经过混沌函数改进的SSA中的麻雀具有更好的麻雀位置,功率跟踪效果得到了显著提升!

参考文献

An Improved Sparrow Search Algorithm——wei song

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习不好的电气仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值