车联网场景下的视觉辅助太赫兹多用户波束跟踪

本文提出一种改进的双模深度学习模型,用于车联网场景下的多移动车辆太赫兹波束预测和跟踪。通过结合历史波束信息与图像信息的时序特征,降低多用户波束跟踪的复杂度,提高跟踪精准率,解决传统方法在多接入和用户不确定性问题上的不足。实验显示,该方法相比于基于波束索引和图像处理的方案,具有更高的跟踪精准率和较低的复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【摘  要】太赫兹车联网场景中车辆的高移动性导致传统波束管理方案建立的通信链路容易中断,基于视觉辅助的波束管理可以有效降低链路中断概率,但用户的多接入与数量不确定性使得多用户太赫兹波束管理时间复杂度成本难控制。针对这一问题,优化现有视觉辅助的深度学习预测方法,提出一种改进的双模深度学习模型,利用多用户历史波束信息以及图像信息协同训练。通过提取历史波束以及图像信息的时序变化特征,对太赫兹车联网场景下的多移动车辆进行多波束预测,从而实现多用户波束同时跟踪。实验验证表明所提方法对比现有基于波束索引、基于图像处理的方案具有更高的跟踪精准率以及较低的复杂度。

【关键词】太赫兹;视觉辅助;多用户;波束跟踪

0   引言

随着无线数据流量呈现爆炸式增长,语音业务以及传统的多媒体业务已经无法满足人们日益发展的生活需求[1]。特别是近年来车联网(V2X, Vehicle to Everything)的发展,给人们生活带来巨大便利的同时,也对无线通信速率提出了Tbps级要求[2-5]。太赫兹频段具有丰富的带宽资源,相对于5G使用的毫米波通信,THz可以提供10倍以上的更大带宽以实现Tbit/s的超高速数据传输,有望成为实现下一代移动通信的关键技术之一[6-8]。然而,由于THz较高的路径损耗以及吸收损耗,需采用超大规模多输出输入天线阵列࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值