【摘 要】太赫兹车联网场景中车辆的高移动性导致传统波束管理方案建立的通信链路容易中断,基于视觉辅助的波束管理可以有效降低链路中断概率,但用户的多接入与数量不确定性使得多用户太赫兹波束管理时间复杂度成本难控制。针对这一问题,优化现有视觉辅助的深度学习预测方法,提出一种改进的双模深度学习模型,利用多用户历史波束信息以及图像信息协同训练。通过提取历史波束以及图像信息的时序变化特征,对太赫兹车联网场景下的多移动车辆进行多波束预测,从而实现多用户波束同时跟踪。实验验证表明所提方法对比现有基于波束索引、基于图像处理的方案具有更高的跟踪精准率以及较低的复杂度。
【关键词】太赫兹;视觉辅助;多用户;波束跟踪
0 引言
随着无线数据流量呈现爆炸式增长,语音业务以及传统的多媒体业务已经无法满足人们日益发展的生活需求[1]。特别是近年来车联网(V2X, Vehicle to Everything)的发展,给人们生活带来巨大便利的同时,也对无线通信速率提出了Tbps级要求[2-5]。太赫兹频段具有丰富的带宽资源,相对于5G使用的毫米波通信,THz可以提供10倍以上的更大带宽以实现Tbit/s的超高速数据传输,有望成为实现下一代移动通信的关键技术之一[6-8]。然而,由于THz较高的路径损耗以及吸收损耗,需采用超大规模多输出输入天线阵列