网络舆情SIR模型优化与干预研究

本文针对企业网络舆情,优化SIR模型,将感染者细分为积极、中性和消极感染者,考虑发帖率差异,设计不同干预级别,以提升监控精准度。在“海底捞大肠菌群不合格”事件的应用中,改进模型效果优于SIR模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

【背景】网络舆情对企业的健康发展产生越来越重要的影响作用。SIR传染病模型是常用的网络舆情传播研究模型,目前关于网络舆情传播的研究大部分是基于SIR模型及其变种。但现有SIR模型没有将感染者细分,不利于网络舆情的传播研究和精准化监控。【目的】通过优化SIR模型,使其更能反映企业网络舆情的真实情况,并提升监控效果。【方法】将SIR模型的感染者细分为积极的感染者、中性的感染者和消极的感染者等三类感染者。对于不同类型的感染者,其发帖率不同。设置差异化的发帖率,以提升企业网络舆情的监控和预测精准度。根据不同的网络舆情级别,设计三个不同干预级别的监控措施,提升监控效果。【结果】将改进模型应用到“海底捞大肠菌群不合格”的真实企业网络舆情,从效果对比得知,改进模型的监控效果比SIR模型的更理想。【结论】细分研究对象、考虑感染者的发帖率、制定不同监管力度的干预级别,有利于提升企业网络舆情监管的精准度、监管成效和预测准确度。

关键词: 网络舆情; 传染病模型; 传播

引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值