在同一个word文档中即有横向排版又竖向排版页面,如何操作?

 在同一个word文档中即有横向排版又竖向排版页面,如何操作?

目录

 在同一个word文档中即有横向排版又竖向排版页面,如何操作?

1、例如像这样的文档,前一页是文字需要竖向排版,后一页是附件表格需要横向排版

2、在【开始】菜单栏中找到下图中【显示/隐藏编辑标记】点击,(点击显示隐藏编辑标记是为了可以清楚的看到我们插入的分节符)

3、光标定位至需调整页开头位置,依次点击【页面布局】【分隔符】【下一页】,这样就插入了一个分节符(如图2)。

 4、光标定位至需调整页开头位置,依次点击【页面布局】【纸张方向】【横向】,这样既有竖向排版又有横向排版就调整好了。

 5、完整步骤如下图​


1、例如像这样的文档,前一页是文字需要竖向排版,后一页是附件表格需要横向排版

2、在【开始】菜单栏中找到下图中【显示/隐藏编辑标记】点击,(点击显示隐藏编辑标记是为了可以清楚的看到我们插入的分节符)

3、光标定位至需调整页开头位置,依次点击【页面布局】【分隔符】【下一页】,这样就插入了一个分节符(如图2)。

 

 4、光标定位至需调整页开头位置,依次点击【页面布局】【纸张方向】【横向】,这样既有竖向排版又有横向排版就调整好了。

 

 5、完整步骤如下图

喜欢的记得点赞收藏哦!

安利一个R语言的优秀博主及其CSDN专栏:
博主博客地址:

Data+Science+Insight的博客_CSDN博客-R语言从入门到机器学习,数据科学从0到1,机器学习面试+横扫千军领域博主

statistics.insight的博客_CSDN博客-R语言入门课,ggplot2及其扩展包可视化实战系列(持续更新),数据科学持续学习领域博主

博主为CSDN数据科学领域知名博主(博客内容包括:数据科学从0到1、R语言从入门到机器学习、机器学习面试+横扫千军、Python编程技巧高效复用等系列) 毕业于中国科学院大学智能计算专业。研究方向为,数据挖掘、机器学习、深度学习等。深度参与了多项数据挖掘、计算机视觉以及自然语言处理相关项目,例如,社会计算、异常分析、聚类分析、预测分析、序列标记、语言生成、OCR、图像分类+检测+分割等。现任某茅数据科学家,负责数据科学团队的管理及项目实施。曾就职于中国信科集团,负责大数据与机器学习组的管理及项目实施。曾参与国家级医疗大数据平台机器学习项目的开发和建设、构建了完整的数据链路、特征池、模型仓库、迁移中心、数据应用、数据服务Pipeline,并与AWS中国基于AWS云服务合作开发大型工业互联网项目,积累了工业互联网模型构建、部署、监控实战经验。

Microsoft Excel是Microsoft为使用Windows和Apple Macintosh操作系统的电脑编写的一款电子表格软件。直观的界面、出色的计算功能和图表工具,再加上成功的市场营销,使Excel成为最流行的个人计算机数据处理软件。在1993年,作为Microsoft Office的组件发布了5.0版之后,Excel就开始成为所适用操作平台上的电子制表软件的霸主。

在 Excel中,函数实际上是一个预先定义的特定计算公式。按照这个特定的计算公式对一个或多个参数进行计算,并得出一个或多个计算结果,叫做函数值。使用这些函数不仅可以完成许多复杂的计算,而且还可以简化公式的繁杂程度。

我们生活的这个世界是丰富多彩的,几乎所有的知识都来自于视觉。也许无法记住一连串的数字,以及它们之间的关系和趋势。但是可以很轻松地记住一幅图画或者一个曲线。因此通过使用图表,会使得用Excel编制的工作表更易于理解和交流

### CMU卡内基梅隆大学自主探索导航系统概述 CMU机器人研究所在自动驾驶车辆和移动机器人自主导航方面取得了显著成就[^1]。该机构的研究不仅限于理论探讨,更注重实际应用和技术实现。 #### 主要研究成果 - **Red Whittaker领导下的无人车项目**:自上世纪80年代起,CMU就开始涉足无人驾驶汽车领域。其中最著名的成果之一是由Red Whittaker教授带领团队完成的一系列挑战赛获胜作品,这些车辆能够在复杂环境中安全行驶并执行任务。 - **NavLab计划**:作为早期的重要组成部分,NavLab致力于开发能够理解周围环境并对之作出反应的智能交通工具。通过不断改进传感器融合算法以及路径规划策略,使得机器可以在未知地形上高效行动。 #### 技术特点优势 为了使机器人具备更强健可靠的自主能力,研究人员专注于以下几个关键技术方向: - **多模态感知技术**:利用激光雷达(LiDAR),摄像头等多种类型的传感设备获取丰富的环境信息;通过对不同数据源的有效整合来提高定位精度及障碍物检测效果。 - **强化学习方法的应用**:借助模拟仿真平台训练基于深度神经网络决策机制,在面对动态变化场景时可以快速适应调整行为模式,从而更好地应对各种突发状况。 ```python import numpy as np from sklearn.model_selection import train_test_split X, y = np.arange(10).reshape((5, 2)), range(5) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) ``` 此代码片段展示了如何分割数据集用于模型训练评估过程中的一个简单例子,并不是直接关联到具体的技术细节中去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值