HW4_SelfAttention_pytorch部分

解释pytorch中torch.optim.lr_scheduler.LambdaLR的作用

torch.optim.lr_scheduler.LambdaLR 是 PyTorch 中用于调整学习率的调度器之一。它允许用户通过自定义的 lambda 函数(也就是匿名函数)来调整学习率。这种方式提供了高度的灵活性,可以实现复杂的学习率调度策略。

作用

LambdaLR 的主要作用是根据训练过程中每个 epoch 或者 batch 的变化,通过自定义函数来调整优化器的学习率。

主要参数

  • optimizer: 需要调整学习率的优化器。
  • lr_lambda: 一个函数或者函数列表,每个函数都接收一个参数 epoch 并返回一个系数,这个系数将与初始学习率相乘得到新的学习率。
  • last_epoch (可选): 上一个 epoch 的编号。用于恢复训练时的状态。

用法示例

1. 简单的示例

假设我们有一个优化器 optimizer,初始学习率为 0.1,我们希望每个 epoch 将学习率降低到原来的 90%。

import torch
import torch.optim as optim

# 创建一个简单的模型
model = torch.nn.Linear(2, 1)

# 使用SGD优化器
optimizer = optim.SGD(model.parameters(), lr=0.1)

# 自定义lambda函数,每个epoch降低90%
lambda1 = lambda epoch: 0.9 ** epoch

# 创建LambdaLR调度器
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)

# 训练循环
for epoch in range(10):
    # 训练代码...
    # 调整学习率
    scheduler.step()
    # 打印当前学习率
    print(f'Epoch {epoch}: lr = {optimizer.param_groups[0]["lr"]}')

输出:

Epoch 0: lr = 0.1
Epoch 1: lr = 0.09
Epoch 2: lr = 0.081
Epoch 3: lr = 0.0729
...
2. 使用多个lambda函数

如果优化器有多个参数组,可以使用一个lambda函数列表为每个参数组指定不同的学习率调度策略。

# 创建两个参数组的优化器
optimizer = optim.SGD([
    {'params': model.layer1.parameters(), 'lr': 0.1},
    {'params': model.layer2.parameters(), 'lr': 0.01}
])

# 为每个参数组定义一个lambda函数
lambda1 = lambda epoch: 0.9 ** epoch
lambda2 = lambda epoch: 0.95 ** epoch

# 创建LambdaLR调度器
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=[lambda1, lambda2])

# 训练循环
for epoch in range(10):
    # 训练代码...
    # 调整学习率
    scheduler.step()
    # 打印当前学习率
    print(f'Epoch {epoch}: lr1 = {optimizer.param_groups[0]["lr"]}, lr2 = {optimizer.param_groups[1]["lr"]}')

总结

torch.optim.lr_scheduler.LambdaLR 提供了一种灵活且强大的方式来调整学习率,通过自定义的lambda函数,可以实现各种复杂的学习率调度策略,从而更好地控制模型的训练过程。

解释pytorch中model.state_dict()

在 PyTorch 中,model.state_dict() 是一个非常重要的方法,用于获取模型的状态字典(state dictionary)。状态字典是一个 Python 字典对象,它将每一层的参数(权重和偏置)映射到它们各自的张量值。具体来说,它保存了模型的所有可学习参数。

主要作用

  1. 保存模型参数:你可以将模型的状态字典保存到磁盘,以便在以后加载和恢复模型。
  2. 加载模型参数:你可以从磁盘加载一个状态字典,并将其加载到模型中,以恢复模型的状态。
  3. 检查和调试:你可以打印出状态字典的内容,以检查模型的各层参数,方便调试。

示例用法

1. 获取模型的状态字典

假设我们有一个简单的神经网络模型:

import torch
import torch.nn as nn

class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc1 = nn.Linear(10, 20)
        self.fc2 = nn.Linear(20, 1)
    
    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 创建模型实例
model = SimpleModel()

现在,我们可以使用 model.state_dict() 来获取模型的状态字典:

# 获取模型的状态字典
state_dict = model.state_dict()

# 打印状态字典
for param_tensor in state_dict:
    print(param_tensor, "\t", state_dict[param_tensor].size())

输出示例(显示每层参数的名称和尺寸):

fc1.weight    torch.Size([20, 10])
fc1.bias      torch.Size([20])
fc2.weight    torch.Size([1, 20])
fc2.bias      torch.Size([1])
2. 保存模型的状态字典

你可以将模型的状态字典保存到文件中,以便以后加载:

# 保存状态字典到文件
torch.save(model.state_dict(), 'model_state.pth')
3. 加载模型的状态字典

你可以从文件加载状态字典,并将其加载到模型中,以恢复模型的状态:

# 创建模型实例
model = SimpleModel()

# 加载状态字典
model.load_state_dict(torch.load('model_state.pth'))

# 确保模型在推理模式(不启用 Dropout 等)
model.eval()

总结

model.state_dict() 是 PyTorch 中获取模型参数的标准方式。它返回一个字典,包含了模型中所有可学习参数(权重和偏置)。通过保存和加载状态字典,可以方便地持久化模型的状态,进行模型的检查和调试,并在不同的训练和推理环境中恢复模型。

  • 7
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值