基于分解的多目标优化算法MOEAD(一):加权和分解法的等高线理解和分析

本文通过对比NSGAII和MOEAD算法,重点讲解了加权和法(WeightedSum)在多目标优化中的等高线分析,展示了该方法如何通过向量投影决定个体优劣。作者以直观的图形解释了WS分解法的进化方向特性。
摘要由CSDN通过智能技术生成

NSGAII算法和MOEAD算法是多目标优化领域的两大经典算法。相较于NSGAII算法,MOEAD算法更难理解,主要难点在不能很好理解三种分解方法(尤其是后两种)。本文旨在通过对等高线的分析来帮助理解三种分解策略。为便于理解,本文的目标函数数量均为2。

加权和法(Weighted Sum)的数学表达式为:

$$
\begin{align*}
min \;\; g^{ws}(x | \lambda) = \sum_{i=1}^{m} \lambda_{i} f_{i}(x)
\tag{1}
\end{align*}
$$

向量形式为:

$$
\begin{align*}
min \;\; g^{ws} = \lambda^{T} f
\tag{2}
\end{align*}
$$

显然\(  \lambda^{T} f  \)是向量\(  \overrightarrow{\lambda}  \)和\(  \overrightarrow{f}  \)的内积。若令\(  \theta  \)为向量\(  \overrightarrow{\lambda}  \)和\(  \overrightarrow{f}  \)的夹角,则内积还可以表示为:

$$
\begin{align*}
{\left| \overrightarrow{\lambda} \right|} \cdot {\left| \overrightarrow{f} \right|} {\cos \theta}
\tag{3}
\end{align*}
$$

其中\(  \left| \overrightarrow{f} \right| \cos \theta \)是向量\(  \overrightarrow{f}  \)在向量\(  \overrightarrow{\lambda}  \)方向上的投影,示意图如图1所示。

图1

由于\(  \left| \overrightarrow{\lambda} \right|  \)是定值,所以\(  g^{ws}  \)的大小仅取决于\(  \left| \overrightarrow{f} \right| \cos \theta \)。如图2所示,直线\(  l  \)上的点在向量\(  \overrightarrow{\lambda}  \)方向的投影均为\(  \left| \overrightarrow{f} \right| \cos \theta \),因此直线\(  l  \)是一条等高线,其上所有的点与\(  \overrightarrow{\lambda}  \)的\(  g^{ws}  \)值相同。

图2

通过上述例子可以得出,WS法的等高线垂直于向量\(  \overrightarrow{\lambda}  \),且等高线离原点越近,其上面的点的\( g^{ws}  \)值越小

如图3所示,如果现在有两个点\(  f(x_{1})  \)和\(  f(x_{2})  \),分别位于等高线\(  l_{1}  \)和\(  l_{2}  \)上。那么由于\(  l_{1}  \)比\(  l_{2}  \)更接近原点,所以满足\(  g^{ws}(x_{1}|\lambda) < g^{ws}(x_{2}|\lambda)  \),因此可以认为个体\(  x_{1}  \)优于个体\(  x_{2}  \)。

图3

综上分析,可以认为,WS分解法的进化方向为平行于向量\(  \overrightarrow{\lambda}  \)指向原点,如图4所示。

图4


往期内容:

外罚函数法:外罚函数法(一):外罚函数的构造

                     外罚函数法(二):SUMT算法及其收敛性证明

多目标粒子群算法:智能优化算法:多目标粒子群优化算法(MOPSO)

创作不易,点个赞再走

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值