基于分解的多目标优化算法MOEAD(二):切比雪夫分解法的等高线理解和分析

本文聚焦多目标优化领域的NSGAII和MOEAD算法,着重探讨较难理解的MOEAD算法的三种分解方法。采用改进的切比雪夫分解法,通过对等高线的分析,分情况讨论向量位置关系,得出个体优劣判断及MTCH分解法的进化方向,助力理解分解策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NSGAII算法和MOEAD算法是多目标优化领域的两大经典算法。相较于NSGAII算法,MOEAD算法更难理解,主要难点在不能很好理解三种分解方法(尤其是后两种)。本文旨在通过对等高线的分析来帮助理解三种分解策略。为便于理解,本文的目标函数数量均为2。

为方便分析,本文采用改进的切比雪夫分解法。(其实道理类似)

改进的切比雪夫(Modified Tchebycheff)分解法的数学表达式为:

$$
\begin{align*}
min \;\; g^{mtch}(x | \lambda,z^{*}) = \max_{1\le i\le m} \left \{ \frac{f_{i}(x)-z^{*}_{i}}{\lambda_{i}}  \right \} 
\tag{1}
\end{align*}
$$

不妨令\(  f_{i} = f_{i}-z^{*}_{i}  \)(这边的式子不太严谨,其实就是把目标函数空间平移一下,意思懂就行)。那么MTCH分解法的数学表达式就变成了:

$$
\begin{align*}
min \;\; g^{mtch}(x | \lambda,z^{*}) = \max_{1\le i\le m} \left \{ \frac{f_{i}(x)}{\lambda_{i}}  \right \}
=\max \left \{ \frac{f_{1}(x)}{\lambda_{1}} ,\frac{f_{2}(x)}{\lambda_{2}} \right\}
\tag{2}
\end{align*}
$$

此时就有两种情况:1)向量\(  \overrightarrow{f}  \)在向量\(  \overrightarrow{\lambda}  \)下方;2)向量\(  \overrightarrow{f}  \)在向量\(  \overrightarrow{\lambda}  \)上方。

1)向量\(  \overrightarrow{f}  \)在向量\(  \overrightarrow{\lambda}  \)下方

图1

由图1可以看出,向量\(  \overrightarrow{\lambda}  \)方向的直线斜率大于向量\(  \overrightarrow{f}  \)方向的直线斜率,所以有:

$$
\begin{align*}
\frac{\lambda_{2}}{\lambda_{1}} > \frac{f_{2}}{f_{1}}
\tag{4}
\end{align*}
$$

简单变换一下,可以得出:

$$
\begin{align*}
\frac{f_{1}}{\lambda_{1}} > \frac{f_{2}}{\lambda_{2}}   \Rightarrow 
max \left \{ \frac{f_{1}}{\lambda_{1}},\frac{f_{2}}{\lambda_{2}} \right \}
=\frac{f_{1}}{\lambda_{1}}
\tag{5}
\end{align*}
$$

将(5)代入(2),可以得到

$$
\begin{align*}
g^{mtch}(x | \lambda,z^{*}) = \frac{f_{1}}{\lambda_{1}}
\tag{6}
\end{align*}
$$

由于\(  \lambda_{1}  \)是定值,所以可以认为\(  g^{mtch}(x | \lambda,z^{*})  \)仅取决于\(  f_{1}  \)。如图2所示,显然线段\(  l  \)上的点与向量\(  \overrightarrow{\lambda}  \)的\(  g^{mtch}  \)值相同,因此线段\(  l  \)是一条等高线。

图2

2)向量\(  \overrightarrow{f}  \)在向量\(  \overrightarrow{\lambda}  \)上方

图3

由图1可以看出,向量\(  \overrightarrow{f}  \)方向的直线斜率大于向量\(  \overrightarrow{\lambda}  \)方向的直线斜率,所以有:

$$
\begin{align*}
\frac{f_{2}}{f_{1}} > \frac{\lambda_{2}}{\lambda_{1}}
\tag{7}
\end{align*}
$$

简单变换一下,可以得出:

$$
\begin{align*}
\frac{f_{2}}{\lambda_{2}} > \frac{f_{1}}{\lambda_{1}}   \Rightarrow 
max \left \{ \frac{f_{1}}{\lambda_{1}},\frac{f_{2}}{\lambda_{2}} \right \}
=\frac{f_{2}}{\lambda_{2}}
\tag{8}
\end{align*}
$$

将(8)代入(2),可以得到

$$
\begin{align*}
g^{mtch}(x | \lambda,z^{*}) = \frac{f_{2}}{\lambda_{2}}
\tag{9}
\end{align*}
$$

由于\(  \lambda_{2}  \)是定值,所以可以认为\(  g^{mtch}(x | \lambda,z^{*})  \)仅取决于\(  f_{2}  \)。如图4所示,显然线段\(  l  \)上的点与向量\(  \overrightarrow{\lambda}  \)的\(  g^{mtch}  \)值相同,因此线段\(  l  \)是一条等高线。

图4

对于某个向量\(  \overrightarrow{\lambda}  \),个体在2维目标函数空间的分布有如下4种情况。 

1)两个体都在向量\(  \overrightarrow{\lambda}  \)上方,如图5中的\(  x_{1}  \)和\(  x_{2}  \)。由于\(  f_{2}(x_{2}) < f_{2}(x_{1})  \),所以\(  g^{mtch}(x_{2}|\lambda,z^{*}) = \frac{f_{2}(x_{2})}{\lambda_{2}} < g^{mtch}(x_{1}|\lambda,z^{*}) = \frac{f_{2}(x_{1})}{\lambda_{2}}  \),因此可以认为个体\(  x_{2}  \)优于个体\(  x_{1}  \)。

2)两个体都在向量\(  \overrightarrow{\lambda}  \)下方,如图5中的\(  x_{3}  \)和\(  x_{4}  \)。同理可以得出个体\(  x_{3}  \)优于个体\(  x_{4}  \)。

3)两个体都在向量\(  \overrightarrow{\lambda}  \)上,如图5中的\(  x_{5}  \)和\(  x_{6}  \)。此时对于\(  x_{5}  \)有\(  g^{mtch}(x_{5}|\lambda,z^{*}) = \frac{f_{1}(x_{5})}{\lambda_{1}} = \frac{f_{2}(x_{5})}{\lambda_{2}}  \);对于\(  x_{6}  \)有\(  g^{mtch}(x_{6}|\lambda,z^{*}) = \frac{f_{1}(x_{6})}{\lambda_{1}} = \frac{f_{2}(x_{6})}{\lambda_{2}}  \)。而\(  \frac{f_{1}(x_{5})}{\lambda_{1}} < \frac{f_{1}(x_{6})}{\lambda_{1}}  \)、\(  \frac{f_{2}(x_{5})}{\lambda_{2}} < \frac{f_{2}(x_{6})}{\lambda_{2}}  \),所以\(  g^{mtch}(x_{5}|\lambda,z^{*}) < g^{mtch}(x_{6}|\lambda,z^{*})  \),因此可以认为个体\(  x_{5}  \)优于个体\(  x_{6}  \)。

4)两个体在向量\(  \overrightarrow{\lambda}  \)的两侧,如图5中的\(  x_{7}  \)和\(  x_{8}  \)。此时不能确定哪个个体更优。

图5

综上分析,可以认为,MTCH分解法的进化方向为垂直两个坐标轴方向指向原点,如图6所示。

图6


往期内容:

基于分解的多目标进化算法MOEAD:基于分解的多目标优化算法MOEAD(一):加权和分解法的等高线理解和分析

外罚函数法:外罚函数法(一):外罚函数的构造

                     外罚函数法(二):SUMT算法及其收敛性证明

多目标粒子群算法:智能优化算法:多目标粒子群优化算法(MOPSO)

创作不易,点个赞再走

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值