惯性权重和学习因子动态调整的粒子群算法的MATLAB实现

本文介绍了如何在MATLAB中实现粒子群算法(PSO)的一种改进版本,通过动态调整惯性权重w和学习因子c1、c2来提高算法性能。初始参数如a、b、d等被设定,w和c1、c2的动态变化公式以迭代次数(it)为基础。实验选择十维Ackley函数作为测试目标,结果显示动态改进后的IPSO算法在迭代次数和收敛精度上优于原始PSO算法。作者还提供了IPSO运算的具体结果和实验次数,并鼓励读者调整参数以寻找最佳配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本粒子群算法由位置更新公式和速度更新公式组成

其中惯性权重w和学习因子c1,c2的动态改进是目前常用的手段,惯性权重有如下改进:

 学习因子动态改进:

 初始选取系数a=1,b=0.7,d=2;e1、e2和f1、f2都取值为1与0.7

 代码实现为:

        w = 1+(1-0.7).*(it.^2)/(MaxIt^2);
        c1 = (1-0.7).*it/MaxIt+0.7;
        c2 = (1-0.7).*it/MaxIt+0.7;

对原始粒子群算法w取值为1,c1取值为1.5,c2取值为1.7

对相关参数进行设置:种群规模50次,最大迭代次数500次,取值范围为-100~100,速度取值范围设置为-10~10:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法MATLAB学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值