别再执着于大模型提示词技巧了,一起迈向program llms新时代!

在大模型之后,提示词工程师这个岗位开始在市场上出现,我司去年就设了这个岗位,虽然不知道他们具体的工作内容有哪些方向。提示词工程,实际上就是大量的玩家在试玩大模型之后总结出的技巧。互联网上搜一波可以看到大量的诸如50个大模型提示词技巧,100个提示词技巧。这些技巧本身都很不错,但是在试用之后,你可能发现,没有什么提示词策略是可以解决所有类型的问题的。

LLMs本身对提示词是非常敏感的,这意味着,在实际实验过程中,除了要求大模型输出某个内容,还需要约束它按照某种格式,各种条件约束下输出,以确保整体的稳定性。

今天分享的这个思路,是将prompt llms变成program llms,主要来源于斯坦福大学的DSPY框架。将大模型提示词工程转变成像写pytorch代码一样结构化。这个框架的首图如下:

在DSPY中,对应了3大核心模块,Signatures、Modules、Optimizers。如果还原到提示词工程中,Signatures相当于在书写提示词,而Modules就像你使用提示词技巧,比如思维链cot、react等,而Optimizers就像一步一步的去根据模型的生成结果调优提示词。

更具象化一点:

  • Signatures是我们告诉DSPY需要做什么,而不是告诉他应该如何做。例如:输入是文档,输出是摘要;输入是上下文+问题,输出是问题回复。

  • Modules,在DSPY是一些模块化的组件,比如说:dspy.ChainOfThought、dspy.ProgramOfThought,类似于一些可调用的函数

  • Optimizers,根据某个指标对整个流程自动优化。

接下来举个具体的例子:

比如说,我们想解决“姚明的妻子的出生年龄?”这个问题。看到这个问题,大家脑子里肯定蹦出了一堆的解决方案。这是个多跳问题,几乎不可能通过单轮搜索来解决这个问题,大多数系统可以得出“姚明的妻子是谁?”,但是无法回答后续的年龄问题。多轮搜索的系统,通过生成额外的搜索,收集必要的信息,可以得出最终答案,整体上还是蛮复杂的。但是这里举个例子,如何用DSPY只需要几行代码来实现并优化这个问题。

import dspy      turbo = dspy.OpenAI(model='gpt-3.5-turbo')   colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')      dspy.settings.configure(lm=turbo, rm=colbertv2 )   

加载测试数据,多跳问题,可以使用HotPotQA测试

from dspy.datasets import HotPotQA      dataset = HotPotQA(train_seed=1, train_size=20, eval_seed=2023, dev_size=50, test_size=0)      trainset = [x.with_inputs('question') for x in dataset.train]   devset = [x.with_inputs('question') for x in dataset.dev]      len(trainset), len(devset)   #(20, 50)   

设置Signatures

class GenerateAnswer(dspy.Signature):       context = dspy.InputField()       question = dspy.InputField()       answer = dspy.OutputField()         class GenerateSearchQuery(dspy.Signature):          context = dspy.InputField()       question = dspy.InputField()       query = dspy.OutputField()   

构建DSPY pipeline

from dsp.utils import deduplicate      class SimplifiedBaleen(dspy.Module):       def __init__(self, passages_per_hop=3, max_hops=2):           super().__init__()              self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]  # 多跳,每一跳都使用一个dspy.ChainOfThought           self.retrieve = dspy.Retrieve(k=passages_per_hop)           self.generate_answer = dspy.ChainOfThought(GenerateAnswer)           self.max_hops = max_hops              def forward(self, question):           context = []                      for hop in range(self.max_hops):               query = self.generate_query[hop](context=context, question=question).query               passages = self.retrieve(query).passages               context = deduplicate(context + passages)              pred = self.generate_answer(context=context, question=question)           return dspy.Prediction(context=context, answer=pred.answer)   

测试

my_question = "How many storeys are in the castle that David Gregory inherited?"      uncompiled_baleen = SimplifiedBaleen()     pred = uncompiled_baleen(my_question)      print(f"Question: {my_question}")   print(f"Predicted Answer: {pred.answer}")   print(f"Retrieved Contexts (truncated): {[c[:200] + '...' for c in pred.context]}")   

优化

上面提到过,可以用某个打分来优化DSPY的结果,定义一个评估函数

  • 预测答案与真实答案相符。

  • 检索到的上下文包含真实答案

  • 生成的搜索查询不能太杂乱,小于100个字符

  • 生成的搜索查询尽量不要重复(跟历史的相比,不能超过0.8)。

def validate_context_and_answer_and_hops(example, pred, trace=None):       if not dspy.evaluate.answer_exact_match(example, pred): return False       if not dspy.evaluate.answer_passage_match(example, pred): return False          hops = [example.question] + [outputs.query for *_, outputs in trace if 'query' in outputs]          if max([len(h) for h in hops]) > 100: return False       if any(dspy.evaluate.answer_exact_match_str(hops[idx], hops[:idx], frac=0.8) for idx in range(2, len(hops))): return False          return True   

使用 DSPy 中的BootstrapFewShot,通过少量示例来优化流程的预测器。

from dspy.teleprompt import BootstrapFewShot      teleprompter = BootstrapFewShot(metric=validate_context_and_answer_and_hops)   compiled_baleen = teleprompter.compile(SimplifiedBaleen(), teacher=SimplifiedBaleen(passages_per_hop=2), trainset=trainset)   

评估

from dspy.evaluate.evaluate import Evaluate         def gold_passages_retrieved(example, pred, trace=None):       gold_titles = set(map(dspy.evaluate.normalize_text, example["gold_titles"]))       found_titles = set(           map(dspy.evaluate.normalize_text, [c.split(" | ")[0] for c in pred.context])       )       return gold_titles.issubset(found_titles)      evaluate_on_hotpotqa = Evaluate(devset=devset, num_threads=1, display_progress=True, display_table=5)      uncompiled_baleen_retrieval_score = evaluate_on_hotpotqa(uncompiled_baleen, metric=gold_passages_retrieved, display=False)      compiled_baleen_retrieval_score = evaluate_on_hotpotqa(compiled_baleen, metric=gold_passages_retrieved)      print(f"## Retrieval Score for uncompiled Baleen: {uncompiled_baleen_retrieval_score}")   print(f"## Retrieval Score for compiled Baleen: {compiled_baleen_retrieval_score}")         #Output   ## Retrieval Score for uncompiled Baleen: 36.0   ## Retrieval Score for compiled Baleen: 60.0   

在 DSPy 中结合多跳设置甚至可以超越人类反馈。即使是很小的模型,在 DSPy 设置中使用时也可以与更大尺寸模型进行比较。项目框架中有很多的优秀示例,感兴趣的小伙伴可以学习一波。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值