ChatGPT大模型如何用于工业?清华最新《大规模基础模型在预测和健康管理(PHM)中的应用》,55页pdf详述大模型PHM路线

预测性和健康管理(PHM)技术在工业生产和设备维护中发挥着关键作用,通过识别和预测可能的设备故障和损坏,从而允许采取必要的维护措施以增强设备的使用寿命和可靠性,同时降低生产成本和停机时间。近年来,基于人工智能(AI)的PHM技术在工业物联网和大数据背景下取得了显著的成就,并且在各种行业中得到了广泛应用,例如铁路、能源和航空,用于条件监控、故障预测和健康管理。如ChatGPT和DALLE-E等大规模基础模型(LSF-Models)的出现标志着AI从AI-1.0进入了新的AI-2.0时代,其中深度模型从单模态、单任务、有限数据的研究范式迅速演变为多模态、多任务、大数据和超大型模型范式。ChatGPT代表了这种研究范式的里程碑式成就,由于其高度智能的自然语言理解能力,为通用人工智能带来了希望。然而,PHM领域缺乏如何应对AI领域这一重大变化的共识,并需要进行系统的回顾和规划以明确未来的发展方向。为了填补这一空白,本文系统地阐述了LSF-Models的关键组成部分和最新发展。然后,我们系统地回答了如何构建适用于PHM任务的LSF-Model,并概述了这一研究范式的挑战和未来发展路线图.

https://www.zhuanzhi.ai/paper/953013e449244efd0ba5f615c2ffa34c

1. 引言

预测性和健康管理(PHM)是确保工业设备安全可靠运行的关键技术 [1, 2]。通过全面监控和管理设备,PHM减少设备故障的可能性,最大限度地减少生产停机时间,从而提高设备的可靠性和生产效率,为企业创造显著的经济效益 [3, 4]。在工业生产实践中,PHM有三个核心任务:故障检测(异常检测)[5-7],故障诊断 [8-11],和剩余使用寿命(RUL)估计 [12-14]。异常检测的目标是及时识别设备的异常活动和状态,而故障诊断的目标是确定设备故障的原因和位置。另一方面,剩余使用寿命估计预测设备未来可能出现故障的时间。这三项任务从不同的角度共同工作,以确保设备的安全运行。随着工业设备变得越来越复杂,运行监控数据量增大,工业数据分析、设备状态监控和健康管理的自动化成为必要 [15]。这种自动化可以大幅度降低工业资产的维护成本,提高设备状态识别和故障预测的效率和准确性,增强设备运行的可靠性和安全性.

近年来,随着机器学习和深度学习[16-18]技术的进步,PHM领域取得了显著的进步,实现了工业设备状态自动化监控和故障预测,大大提高了工业资产维护的智能水平。自20世纪初以来,机器学习技术在实现PHM的智能识别和决策中发挥了关键作用[19-21]。基于机器学习的PHM模型主要包含两个核心组件:特征工程和机器学习模型。特征工程利用统计分析和信号分析技术[22-26]从工业监控数据中提取健康相关的特征信息。机器学习模型使用各种预测和识别模型,如支持向量机(SVM)[27-29]和K最近邻(KNN)[30-32],实现智能决策。这种研究范式使PHM实现了初步的自动化,减少了工业设备维护中对人工的需求。然而,尽管取得了进步,但仍需要手动特征工程,限制了PHM处理大规模数据的能力。机器学习模型的有限学习能力使这种范式难以适应大数据时代带来的挑战。

自2012年以来,深度学习技术[33-35]凭借其强大的数据分析、特征提取和智能决策能力,彻底改变了各种研究领域的范式。深度学习通过建立多级神经网络结构实现复杂数据的自动特征提取和模式识别,可以自动处理高维、非线性和大量的数据,并具有适应性和泛化能力。因此,深度学习已经成为PHM领域的主流工具[17, 18, 36],不断提高工业资产维护的自动化和智能化水平。针对不同的PHM应用和任务,已经提出了各种深度网络模型,如自编码器[37-39],卷积神经网络(CNNs)[40-49],和递归神经网络(RNNs)[50-52]。自编码器通过数据压缩或重建实现无监督的表示学习,在数据噪声减少、降维和异常检测等任务中表现优秀[53]。CNNs基于卷积理论,通过权值共享和层次学习实现高效的时空特征提取,使其适用于工业设备的健康监控、故障预测和诊断,以及剩余使用寿命预测[54]。RNNs擅长编码长距离的时间特征,使其非常适合分析和处理各种时间信号[55]。因此,RNNs在各种工业PHM应用中得到了广泛的使用。深度学习技术通过构建端到端的智能决策模型,显著减少了工业PHM应用中对人工的需求[8]。然而,现有的深度学习模型在多任务、泛化和认知能力方面仍存在限制。因此,突破这些限制,实现具有高泛化和认知能力的全面多任务智能模型,是亟待解决的问题。

在过去的两年里,大规模基础模型(LSF-Models)[56, 57],如GPT-3 [58, 59]和ChatGPT [60, 61],展示了其流畅的文本对话中高度智能的自然语言理解能力。大规模多模态文本和图像理解模型,如GPT-4 [62],DALL-E-2 [63],和分割任何模型(SAM)[64],进一步展示了这一研究范式在多模态对话、图像生成和分割方面的非凡成就。基于AI的深度模型已从单模态、单任务、有限数据的研究范式(AI-1.0)快速发展到多模态、多任务、海量数据和超大型模型的研究范式(AI-2.0)。图1清楚地显示了这两种研究范式的区别。AI-2.0的核心是具有跨领域知识的LSF-Model,它可以理解数据的通用概念,并在未见过的数据上实现零次学习的泛化,无需额外的训练[64]。这种模型的实现主要基于以下三个关键组件,强大的特征提取模型[65-68],无监督表示学习算法[69-71],和多模态融合算法[72, 73]。此外,广泛的未标记或标记的多模态数据是这种发展的先决条件。然而,在PHM领域如何构建具有跨领域知识的LSF-Model仍然未知,如何开发适用于PHM领域的特征提取、表示学习和多模态融合算法还缺乏足够的研究和分析。此外,PHM领域如何应对AI领域的这一巨大变化仍然没有定论,缺乏系统的文献回顾,以及未来研究方向的路线图。为了填补这个空白,本文首先系统地介绍了LSF-Models的关键组件和最新进展。然后,我们系统地回答了如何构建适用于PHM领域的有效LSF-Model。我们也详细阐述了这个研究范式将面临的挑战以及未来的发展路线图。

具体来说,本综述的主要工作总结如下:1)本文提供了对LSF-Models的三个关键组成部分及其各自研究进展的全面回顾。2)根据PHM领域的实际情况,本文系统地分析并回答了如何构建适用于工业PHM应用的有效LSF-Model。3)本文讨论了PHM领域LSF-Model研究的路线图,并详细分析了这个研究范式面临的挑战和解决方案。本文的其余部分组织如下。第2部分关注LSF-Models的关键组成部分,包括Transformer,自监督学习,和多模态融合。第3部分回顾了LSF-Models在自然语言处理和计算机视觉中的研究进展。第4部分系统地回答了如何为PHM实施LSF-Models,包括研究状态,存在的问题和解决方案。第5部分全面讨论了PHM领域LSF-Model研究的挑战及其未来的路线图。第6部分提出了结论。

2. 大模型进展

在前面的部分中,我们讨论了构建LSF-Models的一些关键组件。本节分别在NLP和CV的领域中,提供了LSF-Models进展的广泛概述和讨论,以展示这些领域最新的发展趋势和方向。

3. 大规模基础模型用于预测性健康管理(PHM)

尽管深度学习模型在PHM中取得了显著的性能,但由于它们通常针对特定的领域和任务进行训练和优化,因此它们的效果有限。因此,在复杂和开放的工业场景中,深度学习模型可能会展现出一些限制,例如有限的泛化、多任务处理和认知能力。现有的模型可能在已知的场景中表现良好,但在未知的场景中很难有效地泛化[192-194]。这种缺乏零样本泛化能力使得它难以应对实际工业场景的复杂性。此外,现有的深度模型通常专注于单一任务。然而,工业设备有数百个核心组件,所有这些组件都需要健康监测和故障预测。为每个核心组件开发相应的深度模型是不现实的。最后,现有的深度模型具有有限的认知能力,很难理解工业数据的性质和一般概念,所以它们经常输出难以理解和错误的结果。LSF-Models的研究为我们展示了一个有效的解决方案,可以成功解决上述问题。如第3节所述,现有的LSF-Models,如ChatGPT [62] 和 SAM [64],已经展示出了出色的数据理解、零样本泛化和强大的多任务处理能力。此外,它还具有一定的高级认知能力,可以解决一些推理任务。因此,LSF-Models的成功标志着AI领域的研究范式从单模式、单任务、有限数据的研究范式(AI 1.0)转变为多模式、多任务、大数据和超大模型的研究范式(AI 2.0)。然而,如何在PHM领域开发LSF-Model仍然没有定论。为了推动LSF-Model在PHM领域的研究和应用,本节从四个方面解释和分析了如何为PHM应用构建LSF-Models。

4. 挑战与未来路线图

在前一部分中,我们讨论了在PHM领域构建LSF-模型的技术细节和可行解决方案。本节试图从更广泛、更全球的角度讨论这些模型的挑战、路线图和前景。通过这样做,我们可以更好地理解整个大局,并确定PHM领域的改进和未来研究的方向。

图9展示了PHM领域中LSF-模型的未来路线图。根据LSF-模型面临的挑战,本节探讨如何解决这些挑战,并详细阐述了未来的路线图。下面将进行详细描述。

5. 结论

目前,深度学习的研究正在经历一场新的革命,即从单模式、单任务、有限数据的研究范式(AI 1.0)迅速发展到多模态、多任务、海量数据和超大模型的研究范式(AI 2.0)。AI 2.0关注的是开发具有跨领域知识的大型基础模型(LSF-Models),这些模型在海量数据集上训练后可以展现出强大的泛化能力和多任务能力。为此,本文全面回顾了LSF-Models的三大技术要点,并分析了LSF-Models在自然语言处理(NLP)和计算机视觉(CV)中的研究现状。文献回顾显示,PHM领域对LSF-Models的研究严重缺乏,且对如何构建适用于PHM应用的LSF-Models尚无可行解决方案。因此,本文从数据集、深度模型、学习算法和数据融合四个方面全面回答了如何构建适用于PHM领域的LSF-Models。最后,本文试图从更广阔、更全球化的角度讨论LSF-Models的挑战和路线图。总的来说,本文系统地介绍了LSF-Models及其在PHM领域的研究现状、挑战、解决方案、路线图和前景,预计能为此领域未来的研究提供宝贵的指导。

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

-END-


👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

  • 8
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
故障预测健康管理PHM)是一种通过收集、分析和利用状态数据来预测设备或系统故障,并进行维护和管理的方法。以下是如何利用状态数据开展故障预测健康管理的一些建议: 1. 数据收集:首先,需要收集设备或系统的状态数据。这可以通过传感器、监控设备或其他数据采集方法来实现。从设备收集的数据可以包括温度、振动、压力、电流、电压等各种指标。 2. 数据分析:将收集到的状态数据进行分析。这包括数据清洗、特征提取和建模等步骤。数据清洗能够剔除异常数据,确保分析的准确性。特征提取则是通过对数据进行转换和降维处理,提取出对故障预测有帮助的特征。建模是根据历史数据训练模型用于预测设备或系统的健康状况和故障风险。 3. 故障预测:根据建立的模型,对设备或系统进行故障预测。通过实时监测设备的状态数据,并将其与模型进行比较,可以提前预警故障的发生,避免设备停机或发生损坏。预测故障的方法可以包括统计模型、机器学习、人工智能等。 4. 健康管理:根据故障预测的结果,进行设备的健康管理。这包括定期维护、诊断和修复等措施。通过及时维护设备,可以延长其使用寿命和减少故障的发生。如果出现故障,可以根据预测结果进行诊断,并采取适当的措施进行修复。 5. 数据可视化与报告:将分析和预测结果进行可视化展示,并生成报告。通过可视化展示,可以更直观地了解设备的健康状况和故障风险。报告可以用于决策支持和维护计划的制定。 6. 持续改进:PHM是一个持续的过程,需要不断进行改进和优化。通过不断更新模型、改进数据收集和分析方法,可以提高故障预测健康管理的准确性和效果。 总而言之,利用状态数据开展故障预测健康管理需要收集数据、进行分析、预测故障、进行健康管理,并不断进行改进。这样可以提高设备或系统的可靠性和使用寿命,减少故障带来的损失。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值