LLM学习路径-从入门到精通

根据如下两本书:

  •   大规模语言模型:从理论到实践 -- 张奇、桂韬、郑锐、黄萱菁
    
  •   ChatGPT原理与实战
    

按更合理的顺序总结了学习路径,实际可按需学习,后续每个目录将给出相应学习资料和资源(参见阅读原文-Github仓库链接)。

基础知识

  首先,学习基础知识熟悉深度学习和NLP。可参照如下资料:

  视频课程:b站李沐讲AI、台大李宏毅-机器学习、斯坦福cs224n

 书籍:Dive In DeepLearning、《神经网络与深度学习》、《机器学习方法》

  强化学习参考李宏毅课程和动手学强化学习。

------------------------------------------------------------------------学习目录

第1章 技术发展与需求分析

1.1 市场需求分析

    1.1.1、初识大型语言模型LLM

    1.1.2、需求和就业市场分析(职位与技术需求分析)

    1.1.3、商业落地分析(2C、2B应用场景)

    1.1.4、目标与学习计划制定

1.2 技术发展分析

    1.2.1 LLM的发展历程与趋势

    1.2.2 开源LLM生态

    1.1 大规模语言模型基本概念

    1.2 大规模语言模型发展历程

    1.3 大规模语言模型构建流程

第2章 ChatGPT背景与原理

2.1 ChatGPT的背景知识

    2.1.1 ChatGPT发展趋势

    2.1.2 ChatGPT的能力

2.2 ChatGPT的工作原理

    2.2.1 预训练与提示学习阶段

    2.2.2 结果评价与奖励建模阶段

    2.2.3 强化学习与自我进化阶段

2.3 算法细节

    2.3.1 标注数据

    2.3.2 建模思路

    2.3.3 存在问题

2.4 成本分析

    2.4.1 训练、微调和推理部署

第3章 预训练语言模型

3.1 Transformer原理详解

    3.1.1 Transformer结构

        2.1.1 嵌入表示层 

        2.1.2 注意力层

        2.1.3 前馈层

        2.1.4 残差连接与层归一化

        2.1.5 编码器和解码器结构

    3.1.2 Transformer代码分析

    3.1.3 Transformer实战

3.2 生成式预训练语言模型GPT系列分析

    GPT-1:Improving Language Understanding by Generative Pre-Training

    GPT-2: Language Models are Unsupervised Multitask Learners

    GPT-3:Language Models are Few-Shot Learners

    GPT-3衍生模型CodeX: Evaluating Large Language Models Trained on Code 

    GPT-4:GPT-4 Technical Report(openai.com)

    3.2.1 无监督预训练

    3.2.2 有监督下游任务微调

3.3 GPT实战

    3.3.1 基于Transformers库训练GPT2语言模型

    3.3.2 基于GPT-2模型微调的文本摘要实战

        3.3.2.1 数据预处理模块

        3.3.2.2 GPT-2模型模块

        3.3.2.3 模型训练和推理模块

    3.2.4 动手用Numpy实现GPT

    3.2.5 NanoGPT项目详解

    3.2.6 MiniGPT项目详解

    3.2.7 动手用C++实现GPT

3.4 基于Encoder结构的模型

    3.4.1 BERT

    3.4.2 RoBERTa

    3.4.3 ALBERT

    3.4.4 UniLM

3.5 BERT模型实战

    3.5.1 基于HuggingFace的BERT预训练践

    3.5.2 动手用Torch实现BERT预训练训练

    3.5.3 BERT文本分类实战

    3.5.4 BERT-CRF实体识别实战

    3.5.5 BERT+指针网络(UIE)信息抽取实战

3.6 基于夸夸闲聊数据的UniLM模型实战

    3.6.1 数据预处理

    3.6.2 UniLM模型

    3.6.3 模型训练与推理

第4章 提示学习与大型语言模型

4.1 提示学习PromptLearning

    4.1.1 什么是提示学习

    4.1.2 提示模板设计

    4.1.3 答案空间映射设计

    4.1.4 多提示学习方法

4.2 上下文学习

    4.2.1 什么是上下文学习

    4.2.2 预训练阶段提升上下文

    4.2.3 推理阶段优化上下文

4.3 指令数据构建

    4.3.1 手动构建指令

    4.3.2 自动生成指令 

    4.3.3 开源指令数据集

    4.3.4 基于提示的文本情感分析实战

        4.3.1 数据预处理

        4.43.2 模型结构与训练模块

第5章 开源大型语言模型

5.1 Llama1 

   5.1.1 Llama1的模型结构

   5.1.2 注意力外推优化(Rope)

   5.1.3 Llama1源码解析

   5.1.4 Llama1-6B微调

5.2 Llama2源码

   5.2.1 Llama2的模型结构

   5.2.2 Llama2的优化

   5.2.3 Llama2源码解析

   5.2.4 Llama2-6B微调

5.3 ChatGLM3

   5.2.1 ChatGLM3简介

   5.2.2 ChatGLM3-6B微调

5.4 CodeLlama

   5.2.1 CodeLlama简介

   5.2.2 CodeLlama微调

第6章 LLM微调

6.1 全量指令微调

6.2 高效模型微调PEFT简介

6.3 LORA系列

    6.3.1 LoRA(Low Rank Adapter)

    6.3.2 QLoRA

    6.3.3 AdaLoRa

    6.3.4 SLoRA

6.4 P-Tuning系列

    6.4.1 P-Tuning V1

    6.4.2 P-Tuning V2

6.5 基于LLM微调的信息抽取实战

    6.5.1 ChatGLM项目简介

    6.5.2 数据预处理模块

    6.5.3 Freeze微调模块

    6.5.4 LoRA微调模块

    6.5.5 P-Tuning v2微调模块

6.6 Deepspeed-Chat SFT 实践 

    6.6.1 代码结构

    6.6.2 数据预处理

    6.6.3 自定义模型 

    6.6.4 模型训练

    6.6.5 模型推理

第7章 大型语言模型预训练

6.1 大型预训练模型简介

6.2 预训练模型中的分词器

    6.2.1 BPE详解

    6.2.2 WordPiece

    6.2.3 Unigram

    6.2.4 SentencePiece详解

4 分布式训练

    4.1 分布式训练概述

    4.2 分布式训练并行策略

        4.2.1 数据并行

        4.2.2 模型并行

        4.2.3 混合并行

        4.2.4 计算设备内存优化

    4.3 分布式训练的集群架构  

        4.3.1 高性能计算集群硬件组成

        4.3.2 参数服务器架构

        4.3.3 去中心化架构

    4.4 分布式深度学习框架

        4.3.1 并行简介(分布式机器学习,分布式计算)

        4.3.2 Megatron-LM详解

        4.3.3 DeepSpeed详解

        4.3.4 Colossal-AI

4.5 基于DeepSpeed的大型语言模型的预训练实战

    4.5.1 GLM项目简介

    4.5.2 数据预处理模块

    4.5.3 执行模型训练

4.6 DeepSpeed实践

    4.6.1 基础概念

    4.6.2 LLaMA 分布式训练实践 

第8章 LLM应用

7.1 推理规划

    7.1.1 思维链提示(Chain-of-Thought Prompting)

    7.1.2 由少至多提示(Least-to-Most Prompting)

7.2 综合应用框架

    7.2.1 LangChain 框架核心模块

    7.2.2 知识库问答实践

7.3 智能代理AI Agent

    7.3.1 智能代理的组成

    7.3.2 智能代理的应用实例 

第9章 LLM推理加速

9.1、注意力优化

   9.1.1 FlashAttention系列

   9.1.2 PagedAttention

9.2、CPU推理加速

   9.2.1 Llama.c应用与代码详解

   9.2.2 Llama.cpp应用与代码详解

   9.2.3 ChatGLM.cpp应用与代码详解

9.3 推理优化框架

    9.3.1 TensorRT-LLM应用与代码详解

    9.3.2 FasterTransformer应用与代码详解

    9.3.3 FastServe框架

    9.3.4 vLLM推理框架实践

9.4 分布式推理

第10章 强化学习

10.1 基础

    10.1.1 强化学习概述 

    10.1.2 强化学习与有监督学习的区别 

10.2 强化学习环境

10.3 强化学习算法

    10.3.1 Q-learning算法

    10.3.2 SARSA算法

    10.3.3 DQN算法

    10.3.4 Policy Gradient算法

    10.3.5 Actor-Critic算法

第11章 PPO算法与RLHF理论实战

11.1 近端策略优化算法PPO简介

    PPO:Proximal Policy Optimization Algorithms.

    11.1.1 策略梯度算法回顾

    11.1.2  广义优势估计 

    11.1.3 PPO算法原理剖析

    11.1.4 PPO算法对比与评价

11.2 基于人类反馈的强化学习RLHF框架

    RLHF:Augmenting Reinforcement Learning with Human Feedback

    11.2.1 RLHF的流程 

    11.2.2 RLHF内部剖析

    11.2.3 RLHF价值分析

    11.2.4 RLHF问题分析

    11.2.5 数据收集与模型训练

    11.2.6 开源数据

11.3 InstructGPT模型分析

    InstructGPT:Training language models to follow instructions with human feedback

    11.3.1 模型简介

    11.3.2 数据收集

    11.3.3 模型原理

    11.3.4 模型讨论

11.4 基于PPO的正向情感倾向性

    11.4.1 项目任务与数据集分析

    11.4.2 数据预处理模块

    11.4.3 模型训练模块

    11.4.4 模型生成模块

    11.4.5 模型评估模块

11.5 MOSS-RLHF 实践

    11.5.1 奖励模型训练

    11.5.2 PPO 微调 

第12章 类ChatGPT实战

12.1 任务设计

12.2 数据准备

12.3 基于文档生成问题任务的类

    12.3.1 SFT阶段

    12.3.2 RM阶段

    12.3.3 RL阶段

第13章 语言模型训练数据

13.1 数据来源

    13.1.1 通用数据

    13.1.2 专业数据

13.2 数据处理 

    13.2.1 低质过滤

    13.2.2 冗余去除

    13.2.3 隐私消除

    13.2.4 词元切分

13.3 数据影响分析 

    13.3.1 数据规模影响

    13.3.2 数据质量影响 

    13.3.3 数据多样性影响

13.4 开源数据集合

    13.4.1 Pile

    13.4.2 ROOTS

    13.4.3 RefinedWeb 

    13.4.4 SlimPajama

第14章 大语言模型评估

14.1 模型评估概述

14.2 大语言模型评估体系

    14.2.1 知识与能力

    14.2.2 伦理与安全 

    14.2.3 垂直领域评估

14.3 大语言模型评估方法 

    14.3.1 评估指标

    14.3.2 评估方法

14.4 大语言模型评估实践 

    14.4.1 基础模型评估

    14.4.2 SFT/RL 模型评估 

如何学习大模型 AGI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

-END-


👉AGI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉AGI大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉AGI大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值