2024医疗医药领域人工智能大模型场景应用典型案例发布!

2024全球数字经济大会人工智能专题论坛在北京召开,会上发布了“2024人工智能大模型场景应用典型案例”。其中,医疗医药领域共发布了10个案例,彰显了人工智能大模型在医疗医药领域的落地应用,帮助解决实际问题,推动行业发展。具体如下:

大模型赋能下的临床试验患者招募与数据质控

医渡科技有限公司、北京大学肿瘤医院

在患者招募场景,医渡科技利用大数据+大模型技术打造智能筛选系统,可以为肿瘤类项目平均节省88.5%人工筛查成本,非肿瘤类项目平均节省69.8%人工筛查成本。该药物临床试验加速平台已在北京大学肿瘤医院完成了系统部署及推广工作,发挥实际效果。在数字化质控场景,医渡科技与北京大学肿瘤医院合作,利用AI自动扫描技术发现临床试验数据质量问题,针对不同项目类型、科室、申办方的项目进行风险和质量控制。公司目前正在将大模型技术全面融入临床试验场景,以覆盖更多的医疗机构、疾病种类,提供更丰富的服务内容。

APUS医疗大模型提升儿童就医效能

麒麟合盛网络技术股份有限公司、河南省儿童医院合作项目

APUS医疗大模型在河南省儿童医院围绕知识库构建、智能诊疗平台搭建、AI数字医生、智能评价体系建设方面进行实践落地。APUS医疗大模型自4月全面上线以来,迅速成为河南省儿童医院的明星服务项目,为数以万计的患者提供了精准的健康咨询服务、个性化治疗推荐、智能分诊、诊中提醒等服务,有效缓解了医疗资源紧张状况,大幅度提高了就诊效率。

智能超声时代,医疗AI大模型的创新应用案例

北京医准医疗科技有限公司

医准智能此前基于多模态数据打造的超声医学大模型,推出YiZhun Ultrasound GPT。以医疗AI大模型在超声影像中的应用,赋能超声影像智能化升级,更快速、更多维度地拓展动态实时超声AI应用场景,提升诊断和治疗效率,助力多病种研究,助力超声设备智能化升级。

云知声“山海”大模型在,门诊病历生成场景型应用

云知声智能科技股份有限公司、北京友谊医院

云知声基于山海大模型打造的门诊病历生成系统,与传统的录入方式不同,它能够智能筛选出与病情无关的对话,自动抓取并结构化处理关键问诊信息。随着医患对话的进行,系统界面上将逐渐生成了一份准确、简洁的医疗摘要。医生只需稍作修改,即可生成符合病历书写规范的标准病历,大幅提升了病历书写的效率,并减少了因手动录入而产生的错误,获得北京友谊医院的医生们的认可。

大模型平台赋能天士力医药集团降本增效

神州数码(中国)有限公司、天士力医药集团股份有限公司

天士力与神州数码展开战略合作,在效率提升领域,引入神州问学。例如,神州问学通过引入一个架构,能够在MaaS平台用不同底层算法管理各个领域,包括慧决策、慧财报、慧审计、慧分析、慧风控等模块。神州数码不仅能够提供AI应用落地实施服务、相比原厂实施成本更低,而且还支持开箱即用、累积了丰富的大模型工程经验、与企业共创将企业特色业务运行在问学平台上等多重价值,更能匹配企业的实际场景需求。

大模型助力认知功能障碍诊疗水平提升

北京智精灵科技有限公司

算力合作:北京灵汐科技有限公司

数据合作:首都医科大学宣武医院

算力合作:中国电子科技南湖研究院

脑动极光携手首都医科大学宣武医院、北京灵汐科技有限公司、中国电子科技南湖研究院联合研发了“基于大模型的认知障碍疾病数字诊疗平台”,使用人工智能技术,进行智能辅助诊断、大规模智能化推送干预等,让患者自主完成进行精准评估和个性化干预训练,在提升诊断效率同时弥补医务人员缺口。平台借助AI+虚拟人的交互技术使得患者能够独立完成测评,突破了常规医生/护士一对一的服务模式,实现了一对多的高效服务。AI判读通过与头部医疗机构判读的拟合,准确率达到90%以上,确保了诊断的规范性和一致性。此外,平台还运用了个性化的AI干预技术,基于近千万人次的认知训练数据构建了深度学习模型,能够每天从上百万候选训练组合中为用户精准推荐最适合的训练任务组合。该平台已应用于100余家头部医院。

数坤科技ShukunGPT多模态数字医生,赋能医院智慧化

数坤科技股份有限公司

数坤科技自主研发的医疗专用大模型——ShukunGPT多模态数字医生能真真切切地在医院场景中赋能医生、赋能患者,助力医院智慧化实现。在此之前,ShukunGPT多模态数字医生在全球最大的中文医疗评测榜CMB发布的榜单中排名第一;在北京市科委举办的行业大模型创新应用大赛中,ShukunGPT多模态数字医生获评大赛一等奖,医疗领域第一名。

文心生物计算大模型为药物研发提质增效

百度在线网络技术(北京)有限公司、北京市计算中心有限公司

北京市计算中心携手百度,利用百度飞桨螺旋桨PaddleHelix生物计算平台提供的文心生物计算大模型技术,对多年来积累的高质量“药物虚拟筛选数据库”的化合物进行了数据挖掘和过滤,提升虚拟筛选数据库的质量,显著提高药物虚拟筛选的效率和准确性。

AIGP平台构建AAV活性预测ML模型

百图生科(北京)智能技术有限公司、苏州博腾生物制药有限公司

2023年11月,博腾生物与百图生科宣布建立战略合作伙伴关系,共同开发AAV载体设计并拓展AI在基因治疗领域的应用。百图生科将利用博腾生物的AAV技术平台和研究数据,开发AAV组装效率模型和分布模型。双方借助生命科学大模型的能力,加速AAV载体的设计。

首信红砥大模型赋能医保行业,提升百姓就医满意度

首都信息发展股份有限公司

“首都信息医保数字人”是首信红砥大模型赋能医保行业的主要方式一,它具备自然语言交互能力,在医保服务场景中能够实现为参保企业和市民答疑解惑,帮助解读医保政策,有效赋能基层服务人员,实现“智能专业服务”的普及。同时,“首都信息医保数字人”还能够在咨询互动中无缝衔接业务办理流程,让市民享受到“边聊边办”的便捷体验。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

### 2025年AI大模型应用场景 随着技术的进步,预计到2025年,AI大模型将在多个领域展现出更广泛的应用价值。这些模型不仅能处理复杂的任务,还能在特定行业中发挥重要作用。 #### 自然语言处理(NLP) NLP将继续作为AI大模型的重要应用方向之一。届时,基于Transformer架构的大规模预训练模型将进一步优化对话系统的性能,在客服机器人、智能翻译等方面取得显著成果[^1]。例如,企业级客户服务平台将集成先进的多轮对话管理能力,使得机器人的应答更加流畅自然;跨国公司内部沟通工具也将受益于高质量的语言转换服务。 ```python import transformers as trfms tokenizer = trfms.AutoTokenizer.from_pretrained('bert-base-multilingual-cased') model = trfms.BertForSequenceClassification.from_pretrained('bert-base-multilingual-cased') def translate_text(text, target_language='en'): inputs = tokenizer.encode_plus( text, add_special_tokens=True, max_length=512, padding="max_length", truncation=True, return_attention_mask=True, return_tensors='pt' ) outputs = model.generate(**inputs) translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return translated_text ``` #### 计算机视觉(CV) CV方面,图像分类、目标检测以及语义分割等功能会变得更加精准高效。特别是对于医疗影像诊断而言,借助高性能GPU集群加速推理过程,医生可以获得更为可靠的辅助判断依据。此外,零售业利用无人商店内的摄像头监控系统自动识别人脸并完成支付操作也逐渐普及开来。 ```python from ultralytics import YOLO yolo_model = YOLO('yolov8n.pt') results = yolo_model.predict(source='path_to_image_or_video', save=True) for r in results: boxes = r.boxes.xyxy.cpu().numpy() confidences = r.boxes.conf.cpu().numpy() class_ids = r.boxes.cls.cpu().numpy() print(f'Detected objects with confidence scores:\n{list(zip(class_ids, confidences))}') ``` #### 生物医药研究 生物医药行业同样期待着来自AI的力量。药物发现过程中涉及大量化合物筛选工作量巨大且耗时长久,而采用深度学习算法可以帮助科学家们快速定位潜在有效成分。基因编辑CRISPR-Cas9技术配合上预测蛋白质结构的AlphaFold2等工具,则有望开启个性化治疗新时代。 ```bash conda create --name bioai python=3.9 conda activate bioai pip install biopython torch geometric deepchem alphafold ``` ### 实际部署案例 在中国市场环境下,不同地区政府积极出台政策措施促进本地化创新与发展: - **北京**:聚焦基础理论探索和技术标准制定; - **上海**:致力于构建具有全球影响力的产业生态体系; - **深圳**:鼓励开放共享平台建设,降低中小企业进入门槛; - **安徽**:通过税收优惠等方式吸引更多优质项目落地生根; - **成都**:针对金融、教育等行业特点定制专属解决方案; - **杭州**:扶持阿里巴巴达摩院为代表的一批领军型企业开展核心技术突破。 上述举措共同促进了全国范围内AI大模型项目的蓬勃发展,并形成了良好的示范效应[^2]。 ### 最新进展 近年来,研究人员不断尝试改进现有框架以适应更多样化的应用场景需求。一方面,轻量化版本相继问世,旨在解决移动端设备资源受限的问题;另一方面,“零样本/少样本”学习机制受到广泛关注——即无需大规模标注据集即可实现良好泛化效果的新范式正在形成之中。与此同时,跨模态融合也成为热点话题,比如结合文本描述自动生成逼真图片的技术已经取得了阶段性成就[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值