一、MCP(Model Context Protocol)
在AI应用中,大型语言模型(LLM)需要访问外部数据和工具来完成复杂的任务。然而传统的集成方式通常需要为每个数据源或工具单独开发接口,这不仅耗时耗力,还难以维护。MCP的出现,正是为了解决这一问题提供一种通用的、标准化的通信方式。
MCP(Model Context Protocol,模型上下文协议)由Anthropic于2024年11月推出,是一套开放协议标准,旨在规范AI模型与外部数据源、工具之间的交互方式。
它通过标准化接口,实现AI模型与外部资源(如数据库、API、文件系统等)的无缝集成。MCP的设计以模型为中心,将互联网视为上下文和工具的来源,适合当前AI模型(尤其是大型语言模型)访问互联网资源的需求。可以让AI模型像使用USB设备一样方便地调用外部工具,因此可以被视为AI系统的“USB接口”。
其核心目标是解决以下问题:
1、多协议适配与集成复杂度高
- 传统API插件需适配不同协议(如OpenAPI、gRPC等),导致开发成本高、效率低。MCP通过统一接口规范,将分散的API插件简化为“即插即用”模式,降低集成复杂度。
2、数据孤岛限制模型潜力
- AI模型因无法安全访问本地/远程数据而形成数据孤岛。MCP为LLM与外部数据源、工具建立标准化连接通道,实现跨系统数据互通。
3、上下文管理碎片化
- 不同模型或框架的上下文格式不统一,导致协作效率低、可解释性差。MCP标准化上下文数据格式(如基于JSON/Protobuf),统一记录输入、输出、状态等信息,提升多模型协作效率。
4、工具扩展性不足
- 传统方式需为每个工具单独开发适配接口。MCP通过通用协议支持快速扩展外部工具(如数据库、计算引擎),使模型能力突破纯文本交互限制。
5、行业标准缺失
- AI领域缺乏类似“USB-C接口”的通用标准,导致生态割裂。MCP试图定义AI时代的交互事实标准,成为“AI界的HTTP”
核心架构
MCP(Model Context Protocol,模型上下文协议)采用的客户端-服务器架构包含以下三个核心组件:
1、MCP主机(Host)
- 作为发起请求的应用程序(如Claude
Desktop、AI驱动的IDE或聊天机器人),负责协调大语言模型(LLM)的任务执行流程。其核心功能包括:生成初始指令、整合外部工具返回的结果,并在用户交互界面中呈现最终响应。
2、MCP客户端(Client)
- 嵌入在主机程序内部的通信代理,与MCP服务器保持1:1的持久连接。主要职责包括:转发主机的请求(例如“查询数据库”或“调用计算工具”)、接收服务器返回的执行结果,以及维护会话状态信息。
3、MCP服务器(Server)
封装外部数据源或工具的轻量级程序,通过标准化接口提供服务。每个服务器专精于特定功能领域,例如:
- 访问本地资源(文件系统、数据库)
- 连接远程服务(API接口、云存储)
- 执行特定工具(网络搜索、代码执行)
- 服务器将异构系统转化为MCP协议兼容的服务,实现“一次开发,多模型复用”
协议定义了四类核心交互原语
1、资源(Resources)
- 结构化数据片段(如数据库记录、API响应、本地文件),为模型提供动态决策依据。服务器通过该原语暴露可访问的数据源,支持实时行情、历史报表等多样化格式。
2、工具(Tools)
- 封装的可执行函数接口(如SQL查询、可视化渲染、代码执行),使模型能像调用内置功能一样操作外部系统。每个工具包含参数定义、权限说明和执行端点。
3、提示(Prompts)
- 预定义的任务指令模板,通过动态参数注入生成符合业务规范的请求。例如数据分析场景可预置“生成某指标趋势报告”模板,自动填充时间范围、指标名称等变量。
4、采样(Sampling)
- 中间代理层,在敏感操作(如数据库写入)前生成操作预览。例如在数据修改场景中,先返回拟执行SQL语句供人工确认,确保操作安全可控。
应用场景
1、跨平台工具集成
- 支持AI模型统一调用不同供应商的API、数据库及第三方工具(如搜索引擎、数据分析平台),解决传统集成中的碎片化问题,例如阿里云AI项目通过MCP实现多工具协同。
2、智能测试自动化
- 在软件测试领域,MCP支持多智能体协作完成复杂测试流程(如电商平台全链路测试),通过多个Agent模拟用户行为,提升测试覆盖率和效率。
3、持续集成与部署(CI/CD)优化
- 连接版本控制、文档系统等工具,自动识别构建与部署中的问题,提供智能化的代码建议和错误处理,加速开发周期。
4、企业知识库交互
- 通过MCP服务器安全连接企业私有数据源(如内部文档、数据库),使AI模型能够动态获取最新业务数据并生成精准响应。
5、多模态服务整合
- 支持文本、图像、音视频等不同模态工具的协同调用,例如医疗领域结合影像分析工具与病历文本处理模型。
核心优势
统一接口: MCP提供了一种标准化的通信方式,简化了AI助手与外部工具的交互过程。
安全性: 通过MCP,可以限制AI助手对资源的访问权限,确保数据安全。
灵活性: MCP支持多种数据源和工具的集成,能够适应不同的应用场景。
采用CS架构的存在一定的局限性,这种架构可能在Agent断开连接时限制通信,难以支持大规模去中心化协作。
二、ANP(Agent Network Protocol)
当前的互联网基础设施虽然成熟,但对于智能体网络的特定需求,仍然缺乏最优的通信和连接解决方案。ANP的出现,为智能体提供一种去中心化的协作方式。
ANP(Agent Network Protocol,智能体网络协议)是一种专为分布式智能体设计的开源通信协议,旨在为智能体之间的连接、通信和协作提供标准化框架。ANP的设计以智能体为中心,通过去中心化的身份认证和端到端加密通信,确保数据安全和隐私保护。
其目标是成为智能体互联网时代的“HTTP”,为数十亿智能体构建一个开放、安全、高效的协作网络,从而推动未来Agentic Web的发展。
其设计受到Web3、语义网等技术影响,它重点关注:
- 去中心化身份: 基于W3C DID标准实现智能体身份管理;
- 协议协商: 支持动态协商通信协议和交互规则;
- 语义兼容: 利用JSON-LD、RDF等技术实现数据语义对齐。
技术架构
ANP采用三层架构:
- 身份与加密层:基于DID实现身份验证与数据加密;
- 元协议层:定义协议协商机制(如通信格式、QoS参数);
- 应用协议层:实现具体业务逻辑(如任务分配、资源调度)。
应用场景
物联网协同:跨厂商设备Agent的自主协作.在物联网场景中,ANP可以实现大量设备之间的去中心化协作,降低对中心服务器的依赖。
分布式AI训练: 协调异构计算节点的资源分配;
去中心化应用: 支持智能合约与AI Agent的交互。
智能家居: 可以实现不同品牌智能家居设备的无缝协作。例如,智能灯、智能窗帘和智能音箱可以通过ANP直接通信,无需依赖中心服务器。
智能驾驭: 在自动驾驶领域,ANP可以协调不同车辆的智能体之间的通信,提高交通安全性和效率。
核心优势
去中心化:智能体之间直接通信,无需依赖中心服务器,提高了系统的可靠性和安全性。
高效协作:通过ANP,智能体可以快速响应彼此的请求,提高协作效率。
可扩展性:ANP支持大量智能体的加入,能够适应复杂的网络环境。
P2P 架构和DID 认证让ANP更适合未来去中心化的Agent网络,但隐私和权限控制仍是挑战。
三、A2A(Agent2Agent)
随着AI技术的发展,不同来源的智能体需要相互协作。由于技术背景、开发框架和数据格式的差异,智能体之间的通信和协作面临着诸多挑战,A2A协议能够有效解决这一问题。
A2A(Agent2Agent,智能体对智能体协议)是一种开放协议,专注于智能体之间的交互与协作。它允许不同来源、不同技术的智能体相互沟通,安全地交换信息,并协同执行复杂任务。A2A的核心目标是打破系统孤岛,提升智能体的跨平台能力。
该协议由Google于2025年4月9日推出,旨在让不同框架和供应商的AI Agent能够相互通信和协作。A2A得到了Google以及超过50家技术合作伙伴的支持,包括Atlassian、Salesforce和SAP,其目标是解决企业级AI Agent的互操作性的问题。
A2A(Agent到Agent协议)的核心目标是通过标准化协作框架,解决AI智能体之间的关键协同问题,具体包括以下方面:
1、打破生态壁垒,实现跨平台互操作性
- 支持不同供应商、技术框架构建的AI智能体进行无缝通信和协作,消除因底层技术差异导致的孤岛效应。
2、安全高效的信息交换
- 建立安全的数据传输机制,保障智能体间敏感信息交换的安全性,例如跨企业平台的任务执行或用户隐私数据处理。
3、复杂任务的协同执行
- 允许智能体根据各自能力分工协作,共同完成单一模型难以处理的跨系统、多步骤复杂任务(如跨应用调度资源或整合实时数据)。
4、动态能力发现与交互协商
- 提供标准化的能力描述接口,使智能体可主动发现其他智能体的功能,并通过协商确定交互方式(如文本、音视频等),形成灵活的协作网络。
5、构建统一协作规范
- 通过定义通用协议语言,解决工具调用标准不统一、多智能体协作缺乏规范等问题,降低跨系统集成的技术成本。
从技术演进角度看,A2A与MCP等协议形成互补:MCP侧重单个智能体与外部工具的交互标准化,而A2A聚焦多智能体间的群体协作生态构建
设计目标
- 打破生态孤岛:解决多Agent协作的协议不兼容问题;
- 支持长时任务:处理耗时数小时至数天的复杂流程;
- 模态无关性:兼容文本、音频、视频等多模态交互。
技术架构
A2A基于HTTP、SSE(Server-Sent Events)和JSON-RPC构建,包含以下核心模块:
- 能力发现(Capability Discovery):通过Agent Card(JSON元数据)声明Agent能力;
- 任务管理(Task Management):以任务为单位管理多轮交互;
- 协作机制(Collaboration):支持Agent间消息传递与状态同步;
- 用户体验协商:根据终端设备动态调整内容呈现方式。
典型交互流程包括:
- 客户端Agent通过HTTP GET发现远程Agent能力;
- 通过SSE建立持久连接并发送任务请求;
- 远程Agent返回包含文本、表单、流媒体等内容的Message对象;
- 任务完成后生成Artifact(如文件、结构化数据)。
应用场景
跨系统流程自动化: 如招聘场景中,协调简历解析、面试安排、背调等Agent;
供应链管理优化: 连接库存管理、物流调度、需求预测等Agent。A2A可以协调不同企业的智能体,优化供应链流程。例如,一个物流智能体可以与一个仓储智能体协作,实时更新货物状态。
客户关系管理: 语音助手、工单系统、知识库Agent的协同响应。在跨平台客户管理中,A2A可以实现数据共享和协作。例如一个电商平台的智能客服可以与一个社交媒体平台的智能客服协作,提供更全面的客户支持。
医疗健康: A2A可以协调不同医疗机构的智能体,实现医疗数据的共享和协作。
核心优势
跨平台协作: A2A支持不同技术背景的智能体之间的协作,打破了系统孤岛。
灵活性: A2A允许智能体在非结构化模式下协作,适应复杂任务需求。
安全性: A2A通过标准化的协议确保智能体之间的通信安全。
A2A行业支持广泛,适合企业级应用,但可能受限于其专注于互操作性,不如ANP灵活。
A2A的推出,也反映了行业对Agent互操作性的迫切需求。不仅限于技术层面,还涉及企业应用的商业价值。例如,A2A的合作伙伴包括众多企业服务提供商如Deloitte和PwC,这表明其可能在企业数字化转型中扮演重要角色,超出了单纯的技术协议的范畴。
MCP、ANP、A2A的联系与区别
联系
共同目标:MCP、ANP和A2A都致力于提升智能体的协作能力,使其能够更好地完成复杂任务。
互补关系:MCP侧重于AI助手与外部工具的交互,ANP提供去中心化的协作网络,而A2A专注于跨平台协作。三者可以相互补充,共同构建智能体协作生态。
区别
MCP、ANP和A2A的区别主要体现于核心理念、架构、身份认证、信息组织、应用场景和目标用户等维度,下面这个表格每种协议体现了三种协议的主要特点和适用场景,可以帮助大家理解并根据具体需求选择合适的协议。
协同应用模式
MCP+A2A:单个智能体通过MCP接入工具,再通过A2A与其他Agent协作。例如:
- 客服Agent(A2A节点)接收用户请求;
- 通过MCP调用知识库工具检索信息;
- 通过A2A协调工单系统Agent创建服务工单。
ANP+A2A:ANP提供底层身份与通信保障,A2A实现业务层协作。例如:
- 物流Agent通过ANP验证身份并协商通信协议;
- 使用A2A协议与仓储、运输Agent协调货物调度。
未来发展趋势
随着AI技术的不断进步,MCP、ANP和A2A等协议和框架将逐渐成为智能体协作的标准。它们的融合将推动AI助手从单一工具向协作网络的转变,为人类创造更加智能的未来。
例如,在未来的智能家居环境中,MCP可以连接智能助手与各种家电设备,ANP可以实现这些设备之间的去中心化协作,而A2A可以确保不同品牌设备之间的兼容性。通过这种多层次的协作,智能家居系统将变得更加智能和高效。
其共同发展趋势,可以体现为以下几点:
协议融合:MCP可能扩展为A2A的工具调用层,ANP或成为A2A的底层传输协议。
安全增强:零信任架构、同态加密等技术将被集成到协议栈中。
边缘计算支持:优化协议以适应物联网设备的低功耗、高延迟环境。
标准化进程:可能出现类似IETF的跨组织联盟推动协议标准化。
具体到三种协议各自在未来的发展,如下:
MCP的未来: MCP被视为过渡性协议,适合当前AI模型访问互联网资源的需求,但其CS架构可能限制其在去中心化环境中的应用。未来可能需要演进以支持更多Agent协作功能,否则可能被ANP或A2A取代。
ANP的未来:ANP的P2P架构和DID认证使其更适合未来 Agentic Web 的发展,随着Agent网络的普及,ANP可能成为去中心化协作的标准。Linked-Data的使用也可能推动语义理解和数据交换的标准化。
A2A的未来: A2A因Google和行业合作伙伴的支持,有望成为企业级Agent互操作性的主导标准,尤其在复杂工作流自动化中。其成功将取决于实际应用和行业采用率,可能在短期内快速普及。
整体而言,AI Agent的协作将越来越依赖标准化协议,MCPANP和A2A可能在不同层面发挥作用,最终可能出现一个或多个主导协议。去中心化和自治将成为未来发展的重点,ANP和A2A在这方面更具潜力。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!