Transformer与大语言模型的区别和联系

本文介绍了Transformer的自注意力机制在编码和解码长序列数据中的应用,BERT通过掩码语言模型和下一句预测任务提升多任务处理能力,而GPT则作为基于自回归模型的大型语言模型,擅长生成连贯文本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

① Transformer 使用自注意力机制进行编码和解码,能够处理长序列数据; ② BERT 使用掩码语言模型和下一句预测任务进行训练,能够在不同的自然语言处理任务中取得良好的效果; ③ GPT 大模型是一种基于自回归模型的语言模型,能够生成连贯、自然的文本内容。

了解GPT——生成式预训练Transformer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值