YOLOv8损失函数解读

损失分为三个部分: box损失(IoU损失(回归损失))、cls损失(BCE损失(分类损失))、DFL损失(BCE损失(分类损失))

以下解读均为模型输入分辨率为640*640

模型输出为一个列表, 含有三层输出的特征图, [[bs, nc+4x16, 80, 80], [bs, nc+4x16, 40, 40], [bs, nc+4x16, 20, 20]];

其中nc+4 = number of classes + 4x16(4个边, 每个边预测16个位置的概率值(DFL, 请见DFL损失函数解读)), 80x80+40x40+20x20也就是640分辨下采样8、16、32倍。

真实值是一个字典, 包含'im_file', 'ori_shape', 'resized_shape', 'img', 'cls', 'bboxes', 'batch_idx'。

第一步, 对模型输出的操作:

view+concat+split:

[[bs, nc+4x16, 80, 80], [bs, nc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值