为什么要用RNN?
如果我们把单词当做是一个个独立变量的话,我们就不能够获取对这个单词翻译的完整信息,文本翻译的单词意思通常会受到前面单词的影响,所以我们希望能够把前面那些影响单词的信息都考虑进来,而我们的RNN就能实现这个功能,他将每个后面单词的信息输入到前面的input,相当于把前面的单词对他的影响也输入进来。
为什么要用LSTM
参考为什么LSTM可以缓解梯度消失?_了不起的赵队的博客-CSDN博客_lstm为什么能解决梯度消失问题
因为RNN的第二层以上的隐藏层会一直用到前面输入的信息,由于每个隐藏
本文探讨了从RNN到LSTM再到Transformer的发展原因。RNN用于捕捉文本依赖,但存在梯度消失问题;LSTM通过forget gate缓解此问题,但仍无法彻底解决;Transformer通过自注意力机制解决并行计算和梯度消失,提高翻译效率。
最低0.47元/天 解锁文章
2169

被折叠的 条评论
为什么被折叠?



