【全面了解自然语言处理三大特征提取器】RNN(LSTM)、transformer(注意力机制)、CNN

本文介绍了RNN、LSTM和Transformer在自然语言处理中的应用,探讨了它们的基本结构、工作原理、优点与缺点,重点强调了LSTM如何解决RNN的梯度问题,以及Transformer的并行性和长距离依赖处理能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自然语言处理(NLP)是人工智能领域中一个重要的分支,它的目的是让计算机能够理解和处理人类语言,而特征提取是让计算机理解和处理人类语言时必不可少的过程,除了数据的因素,一个特征抽取器是否适配问题领域的特点,有时候决定了它的成败,而很多模型改进的方向,其实就是改造得使得它更匹配领域问题的特性(引自张俊林老师的文章)。
下面本文从基本结构、工作原理、优缺点和适用场景具体介绍一下这三个主要的特征提取器

一 、RNN

循环神经网络或递归神经网络。顾名思义,RNN在处理序列信息时(比如一段文本)是递归进行,即下一时刻的处理依赖于上一时刻的结果。
即:不同于传统的神经网络结构,RNN隐藏层之间的节点不再无连接而是有连接的。

1.RNN单个cell的结构

参考

在这里插入图片描述
可以看到当前时刻的输出 y^t 和隐藏层状态 a^t 依赖于当前时刻的输入 x^t 和上一时刻的隐藏层状态 a^t-1

2.RNN工作原理

在这里插入图片描述

其中一个cell对应于RNN单个细胞的结构,对于上图中的文本翻译问题,输出接收最后一层每个时刻隐藏层的状态,但是对于分类问题,输出只接受最后一层最后一个时刻的隐藏层状态。

3.RNN优缺点

  • 优点:

    1. RNN能够有效地处理序列数据
    2. 由于权重共享,RNN在内存使用上比全连接网络高效
  • 缺点

    1. 梯度消失和梯度爆炸: 在学习长序列时,RNN容易遇到梯度消失或梯度爆
### 各种深度学习模型的工作原理与应用场景 #### 卷积神经网络(CNN) 卷积神经网络是一种专门用于处理具有网格状拓扑的数据的神经网络架构,特别擅长于图像分类、目标检测等领域。其核心思想在于利用局部感知野和权值共享来减少参数数量并提高计算效率[^2]。 - **工作原理**: CNN主要由卷积层、池化层和全连接层组成。卷积层通过滤波提取特征;池化层则降低维度以减少过拟合;最后通过全连接层完成分类任务。 - **应用场景**: 图像识别、视频分析、医学影像诊断。 ```python import tensorflow as tf from tensorflow.keras import layers, models model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(10)) ``` --- #### 循环神经网络(RNN) 循环神经网络是一种能够捕捉时间序列数据依赖关系的模型,广泛应用于自然语言处理领域。然而,由于梯度消失或爆炸问题,传统的RNN难以处理较长的时间序列数据[^3]。 - **工作原理**: RNN的核心特点是隐藏状态会传递到下一个时刻,形成一种“记忆”。这种特性使其可以建模动态时序行为。 - **应用场景**: 文本生成、情感分析、手写体识别。 --- #### 长短时记忆网络(LSTM) 作为一种改进版的RNNLSTM通过引入输入门、遗忘门和输出门三种门控机制,成功克服了传统RNN存在的梯度消失问题,非常适合处理长期依赖的任务。 - **工作原理**: LSTM单元内部维护了一个细胞状态,并借助上述三类门控结构决定何时更新、保留或者释放信息。 - **应用场景**: 股票价格预测、语音合成、机翻译。 ```python from tensorflow.keras.layers import LSTM lstm_layer = LSTM(units=64, return_sequences=True) ``` --- #### 生成对抗网络(GAN) 生成对抗网络由生成和判别两部分构成,二者相互竞争又共同进化,最终实现高质量样本的生成[^1]。 - **工作原理**: 判别负责区分真实数据与伪造数据,而生成试图欺骗判别接受虚假样本。经过多次迭代优化后,生成可生成接近真实的样本。 - **应用场景**: 图像超分辨率重建、风格迁移、虚拟人物创建。 ```python import torch.nn as nn class Generator(nn.Module): def __init__(self): super().__init__() self.main = nn.Sequential( nn.Linear(100, 256), nn.ReLU(), nn.Linear(256, 784), nn.Tanh() ) def forward(self, x): return self.main(x) ``` --- #### Transformer Transformer摒弃了以往基于RNN的设计思路,转而采用自注意力机制(Self-Attention Mechanism),极大地提升了并行计算能力以及长距离上下文关联捕获的能力[^5]。 - **工作原理**: 编码端接收输入序列并通过多头自注意力建立全局联系;解码端依据编码结果逐步生成目标序列。整个过程无需顺序执行即可一次性获取全部位置的信息。 - **应用场景**: 自然语言生成、问答系统构建、跨语言翻译服务。 ```python import transformers tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-uncased') model = transformers.BertModel.from_pretrained('bert-base-uncased') inputs = tokenizer("Hello world!", return_tensors="pt") outputs = model(**inputs) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值