风力发电机组机械功率Pm与转子转速Wm关系(Matlab实现)

文章探讨了风力涡轮机的数学模型,重点是描述了机械扭矩如何随风速变化,涉及空气动力学参数和代码实现。通过计算给出了不同风速下的功率和转速关系,并创建了查找表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 数学模型

2  代码

3 结果


1 数学模型

风力机空气动力学模型

风力涡轮机的动态输出机械扭矩表示为:

                     

其中\rho是空气密度(kgm^{-3}) , A是叶片扫掠面积m^{2} , R是风力涡轮机的转子半径 (m), V_{w}是风速 (m/s)。C_{p}是叶片的功率系数,它是叶片桨距角和叶尖速比\theta的函数:

              

\theta是叶片的功率系数,它是叶片桨距角和叶尖速比\lambda的函数:

                            

\Omega _{m}其中是机械角速度 (rad/s)。图 1 给出了叶片半径为 200 英尺的 2 MW 风力机在桨距角为零时的功率、转速和风速关系。与同步转子转速对应的风速约为 24米/小时或 10.33 米/秒。

                                                图1 机械功率、转子转速和风速的关系。

 可以得出一个查找表(表1),给出不同的风速、相应的最佳转子 表1转子轴速和机械功率查找表 :

                                 表1转子轴速度和机械功率查找表

2  代码


% 空气密度=1.23 kg/m^3
% R= 200ft  0.3048= 60.96m
R=46.3;    % 增大此值使y轴的值增大。
cf=240;   % 增加这个值会使曲线向右移动。
vw=[7 8 9 10 11 12];
wm=[0:0.0005:2];
for i=1:6
omega= wm.*2.*pi.*60;
lamda=((omega.*R)./vw(i));
a=(R.*cf)./lamda;
cp=0.5.*((a-2).*exp(-0.255.*a));
pm=(0.5.*1.27.*pi.*(R.^2).*cp.*(vw(i).^3));
pm1=pm/(2e6);
plot(wm,pm1);
hold on;
end

3 结果


% 空气密度=1.23 kg/m^3
% R= 200ft  0.3048= 60.96m
R=46.3;    % 增大此值使y轴的值增大。
cf=240;   % 增加这个值会使曲线向右移动。
vw=[7 8 9 10 11 12];
wm=[0:0.0005:2];
for i=1:6
omega= wm.*2.*pi.*60;
lamda=((omega.*R)./vw(i));
a=(R.*cf)./lamda;
cp=0.5.*((a-2).*exp(-0.255.*a));
pm=(0.5.*1.27.*pi.*(R.^2).*cp.*(vw(i).^3));
pm1=pm/(2e6);
plot(wm,pm1);
hold on;
end
 

### 关于风机最大功追踪控制曲线图 风机的最大功追踪控制(MPPT, Maximum Power Point Tracking)是一种优化技术,用于确保风机能够在不同风速条件下尽可能高效地运行。这种控制策略的核心在于调整风机的工作状态,使其始终处于最佳工作点附近。 #### MPPT 原理概述 在理想情况下,风机的输出功 \( P \) 可表示为风速 \( v \) 的函数: \[ P(v) = C_p(\lambda,\beta)\cdot\frac{1}{2}\rho A v^3 \] 其中: - \( C_p(\lambda,\beta) \) 是风机的能量转换效系数; - \( \lambda \) 是尖速比(tip-speed ratio),即叶轮尖端速度风速之比; - \( \beta \)桨距; - \( \rho \) 是空气密度; - \( A \) 是扫掠面积[^2]。 为了实现 MPPT,通常需要实时监测风速并动态调节风机的操作参数(如转速桨距),使得风机始终保持在其最优工作区域。 #### 曲线图示例描述 以下是典型的风机 MPPT 控制曲线图表及其含义: 1. **风速 vs 输出功** 这是一条经典的 S 形曲线,展示了风机输出功随风速变化的关系。具体表现为: - 当风速低于切入风速时,风机不发电。 - 在切入风速到额定风速范围内,输出功随着风速呈三次方增长关系。 - 超过额定风速后,风机进入限功模式,保持恒定输出功直到切出风速。 ```plaintext 风速 (m/s) | | _______ | / \ | / \ | / \ | / \ |___________________________> 功 (kW) ``` 2. **扭矩 vs 转速** 扭矩转速之间的关系可以通过能量守恒定律推导得出。对于给定的风速条件,存在一条特定的曲线表明如何通过调整电机扭矩来维持风机的最佳工作效。该曲线一般呈现抛物线形状,在某一固定风速下,对应唯一的最佳转速和扭矩组合。 3. **应力/扭矩 vs 风速** 此类图形反映了风机因超出额定范围而受到额外机械载荷的情况。例如,当风速超过额定值时,由于多余动能无法完全转化为电能,剩余部分将以附加力的形式施加于叶片、主轴以及塔筒之上,从而引起更大的应力水平。 #### Python 绘制示例代码 下面提供一段简单的 Python 代码片段用来绘制上述提到的第一种类型的曲线——风速输出功间的关系图。 ```python import numpy as np import matplotlib.pyplot as plt def power_curve(wind_speeds, rated_power=5e6, cut_in_speed=3, rated_speed=11.2, cut_out_speed=25): powers = [] for ws in wind_speeds: if ws < cut_in_speed or ws > cut_out_speed: p = 0 elif ws >= rated_speed and ws <= cut_out_speed: p = rated_power else: p = ((ws - cut_in_speed)/(rated_speed - cut_in_speed))**3 * rated_power powers.append(p) return powers wind_speeds = np.linspace(0, 30, num=100) powers = power_curve(wind_speeds) plt.figure(figsize=(8,6)) plt.plot(wind_speeds, [p/1e6 for p in powers], label='Power Curve') plt.axhline(y=5, color='r', linestyle='--', linewidth=1, label='Rated Power (5 MW)') plt.xlabel('Wind Speed (m/s)', fontsize=14) plt.ylabel('Output Power (MW)', fontsize=14) plt.title('Typical Wind Turbine Power Output Curve', fontsize=16) plt.legend(fontsize=12) plt.grid(True) plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值