【风能资源评估数据分析】导入、处理并讲解从气象塔测量的历史风力数据研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

1. 数据导入

2. 数据预处理

3. 基本统计分析

4. 风能密度估算

5. 经济和技术可行性分析

总结

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

风能资源评估数据分析

利用风能进行发电是满足当地能源市场需求的一个潜在方案。本文分析了在美国马萨诸塞州一座气象观测塔上测量的风力数据。该塔上安装有两组位于49米高度的风速传感器,两组位于38米高度的风速传感器,以及一组位于20米高度的风速传感器。

此外,分别在49米、38米和20米的高度设有风向传感器。温度则通过位于2米高度的单个传感器记录。从2007年5月25日11点至2008年6月10日16点50分,每隔十分钟,各传感器的平均值、标准偏差、最小值和最大值都被记录下来。

风能资源评估:深化对风力数据的洞察以驱动绿色能源解决方案

面对日益增长的本地能源需求,开发利用风能作为一种清洁能源已成为重要的战略选项。本研究深入探讨了在美国马萨诸塞州某气象观测站点所采集的一系列宝贵风力数据,该站点凭借其精心配置的传感器网络,为我们提供了深刻理解风况特性的窗口。具体而言,观测塔配置了四台风速传感器,战略性地位于49米和38米的高度各两台,以及一台位于较低的20米高度,以捕捉不同高度层的风速变化趋势。此外,三台风向传感器的部署(分别处于49米、38米和20米)确保了对风向变化的精确监控,这对于评估风能捕获设备的最优布局至关重要。

除了对风速与风向的精密监测,站点还配备了一套温度监测系统,在靠近地面的2米高度安装了一个温度传感器,以记录环境温度的变化,这对理解风力资源与气候条件的相互作用提供了关键数据。尤为重要的是,这一详尽的数据记录工作自2007年5月25日上午11时起,持续至2008年6月10日下午4时50分,跨度超过一年的时间内,每十分钟便系统性地记录下各传感器的平均风速、风速的标准偏差、以及风速的极值(最小值与最大值)。这些高频次、全方位的数据收集不仅为我们揭示了风能在特定地理位置上的季节性、日变化特征,也为评估风能资源的稳定性和潜在能量输出提供了坚实的数据基础,进一步指导了风力发电项目的选址、设计与优化,推动绿色能源转型的进程。

风能资源评估数据分析

利用风能进行发电是满足当地能源市场需求的一个潜在方案。本演示案例分析了在美国马萨诸塞州一座气象观测塔上测量的风力数据。该塔上安装有两组位于49米高度的风速传感器,两组位于38米高度的风速传感器,以及一组位于20米高度的风速传感器。

此外,分别在49米、38米和20米的高度设有风向传感器。温度则通过位于2米高度的单个传感器记录。从2007年5月25日11点至2008年6月10日16点50分,每隔十分钟,各传感器的平均值、标准偏差、最小值和最大值都被记录下来。

在进行风能资源评估时,分析历史风力数据是至关重要的第一步,它有助于我们理解某一特定地区的风能潜力,进而决定是否适合建设风电项目。以下是一个概括流程,用于导入、处理及分析从气象塔收集的风力数据:

1. 数据导入

  • 数据来源:首先明确数据的来源,例如本文所述的风速和风向数据来源于美国马萨诸塞州某气象观测塔。
  • 文件格式:数据可能存储为CSV、Excel或特定的气象数据格式。使用编程语言如Python的pandas库或MATLAB的readtable函数等工具进行数据导入。

2. 数据预处理

  • 时间序列整理:由于数据记录是每隔十分钟一次,需将时间戳转换为统一的时间序列格式,便于后续分析。
  • 缺失值处理:检查数据集中是否存在缺失值,常见的处理方式包括插值法(如线性插值、时间序列预测插值)或直接删除含有缺失值的记录。
  • 数据清洗:剔除异常值,这些可能是由于仪器故障或极端天气事件引起的错误读数。常用方法包括Z-score检验或箱型图分析。

3. 基本统计分析

  • 描述性统计:计算每个传感器的风速和风向的平均值、标准差、最小值、最大值等,这有助于初步了解风况的全貌。
  • 风速分布:绘制风速频率分布图,如风速直方图或风玫瑰图,分析主导风向和不同风速段的频率分布。

4. 风能密度估算

  • 风能计算:利用风能公式𝐸=12𝜌𝑣3𝐴E=21​ρv3A(其中,𝐸E为风能,𝜌ρ为空气密度,𝑣v为风速,𝐴A为风轮扫掠面积)估算潜在风能。虽然实际中还需考虑更多因素,但此步骤可以提供初步的风能潜力概览。
  • 风能密度图:制作年平均风能密度图,标示出不同地点或高度的风能潜力,这对于风电机组的选址至关重要。

5. 经济和技术可行性分析

  • 产能评估:结合风力发电机组的具体性能参数,如额定功率、启动风速等,评估理论产能。
  • 经济分析:基于产能评估结果,结合建造成本、运维成本、上网电价等因素,进行投资回报期和经济效益的初步预测。

总结

通过对气象塔收集的风力数据进行细致的导入、预处理、统计分析和风能评估,可以科学地评估一个地区的风能开发潜力,为风能项目的规划和决策提供有力的数据支持。这个过程不仅需要扎实的统计学和数据分析技能,还要求对风能技术及其经济模型有深刻的理解。

📚2 运行结果

部分代码:

% Plot the results
figure
    plot(wresults.diurnal.hour,wresults.diurnal.data,'-o');
    ylabel('v_{diurnal} (m/s)')
    xlabel('Hour of Day')
    xlim([wresults.diurnal.hour(1) wresults.diurnal.hour(end)])
    legend(wind.Properties.VarNames(ivh),'Location','SouthWest')

%% Turbulence Intensity
% Compute the turbulence intensity for each observation and velocity 
% sensor and the distribution for each sensor.  The turbulence intensity is
% defined as the 10-minute standard deviation of the velocity divided by 
% the 10-minute average velocity. 

% Compute turbulence intensities
wresults.ti.data = double(wind(:,iv+1))./double(wind(:,iv));

% Display turbulence intensities versus wind speed for each sensor
timax = ceil(10*max(max(wresults.ti.data)))/10;
vmax = ceil(max(max(double(wind(:,iv)))));

% Visualize data
for ii = 1:length(iv)
    figure
        subplot(2,1,1);
            plot(double(wind(:,iv(ii))),wresults.ti.data(:,ii),'+')
            xlim([0 ceil(vmax)])
            ylim([0 ceil(10*timax)/10])
            box on
            %xlabel('Wind velocity (m/s)')
            ylabel('TI')
            title(['Turbulence Intensity for ' ...
                char(wind.Properties.VarNames(iv(ii)))])
        subplot(2,1,2);
            boxplot(wresults.ti.data(:,ii),round(double(wind(:,iv(ii)))))
            xlim([0 ceil(vmax)])
            xlabel('Wind velocity (m/s)')
            ylabel('TI')
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值