💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于Transformer-SVM的自行车租赁数量预测研究是一个结合了深度学习(Transformer)和经典机器学习(SVM,支持向量机)的预测方法。这种方法旨在利用Transformer强大的特征提取能力和SVM在分类与回归任务中的高效性,实现对自行车租赁数量的精准预测。以下是对该研究的详细探讨:
一、研究背景与意义
随着共享单车和公共自行车租赁系统的普及,如何准确预测租赁数量成为了一个重要的问题。租赁数量的预测不仅有助于运营商优化车辆调度和资源配置,还能提升用户体验,减少等待时间。然而,自行车租赁数量受到多种因素的影响,如天气、季节、工作日与节假日、地理位置等,这些因素之间的复杂交互使得预测任务具有挑战性。因此,基于Transformer-SVM的预测模型应运而生,旨在通过融合两种模型的优势,提高预测的准确性和鲁棒性。
二、Transformer与SVM模型简介
- Transformer模型:
- Transformer是一种基于自注意力机制的深度学习模型,最初用于自然语言处理任务,但近年来在多个领域都展现出了强大的特征提取能力。
- Transformer模型能够有效地捕捉数据中的长程依赖关系,并提取更抽象的特征。其核心是自注意力机制,通过计算数据中不同元素之间的关联性来进行特征提取。
- SVM模型:
- SVM是一种经典的机器学习算法,广泛应用于分类和回归任务中。
- SVM的核心思想是找到一个超平面,将不同类别的数据点分开(在回归任务中则是找到最优的回归线或回归面)。SVM算法通过最大化不同类别数据点之间的间隔来实现分类或回归,具有较高的分类准确率和泛化能力。
三、研究方法
- 数据收集与预处理:
- 收集自行车租赁系统的历史数据,包括每日或每小时的租赁数量、天气情况、季节、节假日、地理位置等信息。
- 对数据进行预处理,包括数据清洗(去除异常值、缺失值填充等)、特征选择(选择对预测结果有重要影响的特征)和特征归一化(将不同量纲的特征转换到同一尺度上)等步骤。
- Transformer特征提取:
- 利用Transformer模型对预处理后的数据进行特征提取。Transformer模型能够捕捉到数据中的长程依赖关系和复杂特征,将原始数据转换为更抽象、更具代表性的特征向量。
- SVM回归/分类:
- 将Transformer提取的特征向量作为SVM模型的输入,进行回归或分类预测。在自行车租赁数量预测中,通常使用SVM回归模型来预测具体的租赁数量。
- SVM模型通过寻找最优的回归线或回归面来拟合特征向量与租赁数量之间的关系,从而实现租赁数量的预测。
- 模型训练与优化:
- 使用历史数据对Transformer-SVM组合模型进行训练,通过反向传播算法和优化器调整模型参数,以最小化预测误差。
- 在训练过程中,可以采用交叉验证等方法来评估模型在不同数据集上的表现,并根据评估结果对模型进行进一步优化。为了防止过拟合,可以采取早停法、Dropout等策略。
- 预测结果评估:
- 使用适当的评估指标(如均方误差MSE、平均绝对误差MAE、均方根误差RMSE等)对预测结果进行评估,以验证模型的准确性和鲁棒性。
- 通过可视化技术展示预测结果与实际值的对比情况,以便更直观地了解模型的预测性能。
四、预期成果与应用
- 提高预测准确性:
- 基于Transformer-SVM的预测模型能够综合利用Transformer的特征提取能力和SVM的回归/分类能力,实现对自行车租赁数量的精准预测。
- 优化资源配置:
- 准确的预测结果将有助于自行车租赁公司合理安排车辆的调配和维护工作,从而优化资源配置并降低运营成本。
- 提升用户体验:
- 通过满足用户的租赁需求并减少等待时间,提升用户对自行车租赁系统的满意度和信任度。
- 促进可持续发展:
- 鼓励城市居民使用自行车出行有助于减少汽车尾气排放、改善空气质量并降低交通拥堵程度,为城市的可持续发展做出贡献。
五、结论
基于Transformer-SVM的自行车租赁数量预测研究是一种创新的预测方法,它融合了深度学习和经典机器学习的优势,实现了对租赁数量的精准预测。该方法不仅提高了预测的准确性和鲁棒性,还为自行车租赁系统的运营管理提供了科学决策支持。未来,随着技术的不断进步和数据的不断积累,该方法有望在更多领域得到应用和推广。
📚2 运行结果
部分代码:
function [mae,rmse,mape,error]=calc_error(x1,x2)
error=x2-x1; %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])
mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])
mape=mean(abs(error)/x1);
disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]李婷婷.城市公共自行车租赁点选址规划研究[D].北京交通大学,2010.DOI:10.7666/d.y1961114.
[2]陆朕.公共自行车租赁点车辆数的预测方法研究[D].南京师范大学,2015.DOI:10.7666/d.Y2857359.
[3]韩军红,魏越,侯礼兴.公共自行车租赁点规模优化[J].山西建筑, 2023, 49(22):57-61.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取