【微电网】并网微电网运行经济性研究(Python代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

并网微电网运行经济性研究解析

一、并网微电网的定义与运行特性

二、经济性影响因素分析

三、成本构成与收益来源

四、经济性评估模型与方法

五、典型案例与经济性对比

六、挑战与未来研究方向

七、结论

📚2 运行结果

​编辑​

🎉3 参考文献

🌈4 Python代码、数据、详细文章下载


💥1 概述

 

在本文中,提出了作者的策略和算法来管理微电网中优化问题,更具体地说,在考虑消费者负荷、太阳能发电和动态电价的情况下,每小时与主电网的能量交易。 该算法的主要目标是在用户负荷、太阳能发电和电价波动的情况下,优化储能系统( ESS )的运行,最大化微电网的收益。除了收益外,该算法还考虑了需要保留的最小电能,因为这对于确保微电网中关键任务操作的连续性至关重要。研究分析了两种能量管理算法的性能:

1 )具有预测未来知识的模型预测控制线性规划( MPCLPF );

2 )不具有未来知识的强化学习。在MPCLPF中,分析了不同的预测算法,并对最优预测算法进行了整合。下面是文章目录:

详细文章见第4部分。

并网微电网运行经济性研究解析

一、并网微电网的定义与运行特性

并网微电网是指通过公共连接点(PCC)与大电网互联的微型电力系统,具备双向电能交换能力。其核心特征包括:

  1. 电能双向流动:可从大电网购电或售电,实现余电上网。
  2. 电压与频率同步:依赖大电网维持系统稳定,减少对储能容量的需求。
  3. 运行模式切换:支持计划性与非计划性切换至孤岛模式,需满足电压、频率标准及快速响应要求(切换时间≤20ms)。
二、经济性影响因素分析

并网微电网的经济性受多维度因素影响,需综合技术、市场、政策等多层面考量:

  1. 技术因素

    • 分布式能源(DERs)效率:光伏、风电的利用率直接影响发电收益。
    • 储能系统成本与寿命:锂电池需充放电6000次以上才能收回成本,且储能策略影响全生命周期经济性。
    • 能源管理系统(EMS) :需优化调度算法以平衡功率波动与成本。
  2. 经济因素

    • 初始投资成本:典型1MW光伏系统投资约1000万元,回收期约8.3年。
    • 运维成本:包括设备维护、燃料费用(如燃气轮机)及储能更换成本。
    • 电价机制:峰谷电价差影响购售电策略,实时电价需动态响应。
    • 市场收益:参与需求响应(DR)的补偿收入、辅助服务(调峰、黑启动)收益。
  3. 政策因素

    • 补贴政策:新能源发电项目可纳入可再生能源基金补贴范围。
    • 交叉补贴与税费:需缴纳政府性基金,但部分地区提供绿色信贷支持。
三、成本构成与收益来源
  1. 成本结构

    • 设备成本:分布式电源(光伏、风电)、储能(锂电池、超级电容)、控制系统(EMS、逆变器)。
    • 运维成本:年均维护费用按设备容量估算,含性能损耗修复与通胀影响。
    • 调度成本:购电成本(公式:购电量×电价)、燃料成本(微型燃气轮机)、污染物治理费用。
    • 隐性成本:并网审批流程产生的行政成本、需求响应参与成本。
  2. 收益来源

    • 售电收入:余电上网按标杆电价结算,或通过市场化交易获取溢价。
    • 需求响应补偿:基于分时电价调整负荷,或接受电网激励参与调峰。
    • 环境收益:减少化石能源使用带来的碳减排收益,可折算为碳交易收入。
    • 延缓电网投资:降低配网扩容需求,减少区域电网建设成本。
四、经济性评估模型与方法
  1. 全生命周期成本-效益模型

    • 目标函数:最大化净收益=总收入(售电+补贴+DR)-总成本(投资+运维+购电)。
    • 约束条件:功率平衡、储能充放电深度、DERs出力限制。
  2. 优化算法

    • 多目标优化:平衡经济性(成本最小)与环保性(排放最低),常用粒子群算法(PSO)或CPLEX求解。
    • 鲁棒优化:应对可再生能源出力不确定性,以经济性为代价提升可靠性。
  3. 案例分析工具

    • 敏感性分析:测试光伏单价、电价差对内部收益率(IRR)的影响。
    • 等年值法:将初始投资与置换成本折算为年均费用,便于跨周期比较。
五、典型案例与经济性对比
  1. 小水电型微电网

    • 配置:1650kW光伏+250kW储能,年用电量0.035亿kWh。
    • 效益:IRR达11.32%,投资回收期9年,经济性显著。
  2. 商业楼宇微电网

    • 挑战:IRR仅1.71%,因负荷波动大且DERs利用率低。
    • 优化方向:引入需求响应与储能峰谷套利提升收益。
  3. 工业园区微电网

    • 关键参数:储能容量与自平衡能力正相关,需权衡投资与收益。
    • 政策依赖:补贴政策退出后,需通过市场机制弥补收益缺口。
六、挑战与未来研究方向
  1. 现存问题

    • 技术成熟度:控制系统定制化程度高,缺乏标准化方案。
    • 储能成本瓶颈:锂电池成本占比超30%,制约经济性提升。
    • 市场机制缺失:辅助服务市场不完善,DR补偿标准不统一。
  2. 发展趋势

    • 混合储能系统:氢储能与锂电池互补,降低全生命周期成本。
    • 数字孪生技术:通过实时仿真优化调度策略。
    • 政策创新:探索微电网作为虚拟电厂(VPP)参与电力市场。
七、结论

并网微电网的经济性取决于技术配置、市场环境与政策支持的协同优化。未来需重点突破储能成本、调度算法与商业模式瓶颈,并通过多目标优化模型量化经济-环保-社会效益的综合最优解。随着电力市场改革深化与技术进步,微电网有望从示范项目向规模化商业应用转型。

📚2 运行结果

fig, ax = plt.subplots(1, 1, figsize = (7.5,5))
ax2 = ax.twinx()
PV_plot = ax.step(np.arange(24), df.iloc[0:24,0], 'ro-', label = "PV")
load_plot = ax.step(np.arange(24), df.iloc[0:24,1], 'b*-', label = "Load")
price_plot = ax2.step(np.arange(24), df.iloc[0:24,2], 'k.-', label = "RTP")

# Display all label in one box
plots = PV_plot + load_plot + price_plot
labels = [plot.get_label() for plot in plots]
ax.legend(plots, labels, loc = 0)
ax.set_xlabel("Hour")
ax.set_ylabel("Power (kW)")
ax2.set_ylabel("Price ($/ kWh)")

plt.show()

fig, ax = plt.subplots(3, 2, figsize = (15, 15))

ax[0, 0].step(np.arange(len(x[:,0])), x[:,0])
ax[0, 0].set_xlabel("Hour")
ax[0, 0].set_ylabel("PV (kW)")
ax[0, 1].step(np.arange(len(x[0:24,0])), x[0:24,0])
ax[0, 1].set_xlabel("Hour")
ax[0, 1].set_ylabel("PV (pu)")

ax[1, 0].step(np.arange(len(x[:,1])), x[:,1])
ax[1, 0].set_xlabel("Hour")
ax[1, 0].set_ylabel("Load (kW)")
ax[1, 1].step(np.arange(len(x[0:24,1])), x[0:24,1])
ax[1, 1].set_xlabel("Hour")
ax[1, 1].set_ylabel("Load (pu)")

ax[2, 0].step(np.arange(len(x[:,2])), x[:,2])
ax[2, 0].set_xlabel("Hour")
ax[2, 0].set_ylabel("Price ($/kWh)")
ax[2, 1].step(np.arange(len(x[0:24,2])), x[0:24,2])
ax[2, 1].set_xlabel("Hour")
ax[2, 1].set_ylabel("Price (pu)")

plt.show()

​ 

plt.plot(lstm.history.history["loss"], "-*", label="training")
plt.plot(lstm.history.history["val_loss"], "-o", label="validation")
plt.xticks(np.arange(0, 20, 2), np.arange(0, 20, 2))
plt.xlabel("Epoch")
plt.ylabel("MAE")
plt.legend()
plt.show()
encoder.load_weights(encoder.weights_dir)
decoder.load_weights(decoder.weights_dir)

y_train_pred, attentions = predict(x_train, y_train)
print ("Training MAE: {:.4f} pu\n".format(mae(y_train[:, :, 0], y_train_pred[:, :, 0])))

fig = plt.figure(figsize=(24, 5))
for idx, i in enumerate([0, 1000, 2000, 3000]):
  ax = fig.add_subplot(1, 4, idx+1)
  ax.plot(y_train_pred[i], "-*", label="prediction")
  ax.plot(y_train[i, :, 0], "-o", label="actual")
  ax.set_xlabel("Hour")
  ax.set_ylabel("Power (pu)")
  ax.legend(loc=2)
plt.show()

plt.plot(lstm.history.history["loss"], "-*", label="training")
plt.plot(lstm.history.history["val_loss"], "-o", label="validation")
plt.xticks(np.arange(0, 20, 2), np.arange(0, 20, 2))
plt.xlabel("Epoch")
plt.ylabel("MAE")
plt.legend()
plt.show()

idx = -10

num_steps_display = timesteps_in

attention = attention_weights
attention = tf.squeeze(attention["decoder_layer1_block2"][idx:idx+1], axis=0)

for head in range(0, num_heads):
  fig = plt.figure(figsize=(32,8))
  spec = gridspec.GridSpec(ncols=90, nrows=100)
  
  top_ax = fig.add_subplot(spec[0:15, 15:75])
  left_ax = fig.add_subplot(spec[25:, 0:10])
  right_ax = fig.add_subplot(spec[25:, 15:])
  
  top_ax.plot(x_train[idx, :num_steps_display, 0])
  top_ax.set_xlim([0, num_steps_display])
  top_ax.set_xticks(range(0, num_steps_display, 4))
  top_ax.set_xticklabels(range(0, num_steps_display, 4))

  left_ax.plot(decoder_input[idx, :, 0], range(0, timesteps_out))
  left_ax.set_yticks(range(0, timesteps_out, 4))
  left_ax.set_yticklabels(range(0, timesteps_out, 4))
  left_ax.invert_yaxis()

  sns.heatmap(attention[head][:, :num_steps_display], cmap="viridis", ax=right_ax)
  right_ax.set_xticks(range(0, num_steps_display, 4))
  right_ax.set_xticklabels(range(0, num_steps_display, 4))
  right_ax.set_yticks(range(0, timesteps_out, 4))
  right_ax.set_yticklabels(range(0, timesteps_out, 4))

  plt.title("Head {}".format(head+1))
  plt.show()

def get_resultplot(SOC_list, action_list, x, start_idx, end_idx):
  hours = end_idx - start_idx
  if hours == 24:
    plt.figure(figsize = (8,7))
    plt.xticks(range(0, 24), range(1, 25))
  else:
    plt.figure(figsize = (25,5))
    plt.xticks(range(0, end_idx-start_idx, 24), range(1, end_idx-start_idx+1, 24))
  plt.step(range(0, hours), SOC_list[start_idx:end_idx], "ro-", label = "SOC")
  plt.step(range(0, hours), x[start_idx:end_idx, 2], "bs-", label = "price")
  plt.step(range(0, hours), x[start_idx:end_idx, 0], "g*-", label = "pv")
  plt.step(range(0, hours), x[start_idx:end_idx, 1], "m--", label = "load")
  plt.bar(range(0, hours), action_list[start_idx:end_idx], 
          facecolor = "w", edgecolor = "k", label = "action")
  plt.ylabel("SOC/ Normalized Price")
  plt.xlabel("Hour")
  plt.legend(loc=2)
  plt.show()  

# Case 1 - Charged with PV not with grid to contain excess PV even the price is higher than average
# Use the spare capacity to store PV
# Not below the target SOC
start_idx = len(SOC_list) - 192
end_idx = len(SOC_list) - 168
get_resultplot(SOC_list, action_list, x, start_idx, end_idx)

# Zoom of case 3

fig, ax = plt.subplots(1, 1, figsize = (8,6))
#ax2 = ax.twinx()
ln1 = ax.step(range(0, 24), SOC_list[13079:13103], "ro-", label = "SOC")
ln2 = ax.bar(range(0, 24), action_list[13079:13103], 
             facecolor = "w", edgecolor = "k", label = "action")
ln3 = ax.axhline(y  = 0.5, linestyle = "--", label = "target SOC")
ax.set_xlabel("Hour")
ax.set_ylabel("SOC")
lns = ln1 + [ln2] + [ln3]
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc = 3)
plt.xticks(range(0, 24), range(1, 25))
plt.show()

其余详细部分见第4部分。 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈4 Python代码、数据、详细文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值