【变压器进行故障诊断】【隶属度】利用溶解气体分析(DGA)对变压器进行故障诊断研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、DGA技术的基本原理与核心作用

1. 故障气体生成机制

2. DGA分析的核心方法

二、隶属度理论在故障诊断中的应用

1. 隶属度定义与数学表达

2. 模糊诊断矩阵构建

3. 与传统方法的对比优势

三、DGA与隶属度结合的典型算法实现

1. 模糊逻辑增强的故障解释矩阵(FIM)

2. 机器学习与隶属度的融合

3. 混合优化算法应用

四、挑战与未来研究方向

1. 当前局限性

2. 智能化发展趋势

五、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


💥1 概述

带有隶属度的电力变压器故障诊断

这项研究致力于开发一种新的方法,用于利用溶解气体分析(DGA)对电力变压器进行故障诊断。该方法将隶属度概念引入故障诊断过程中,通过计算DGA数据对参考故障集的隶属度来实现对变压器故障的准确识别。

在这项研究中,我们考虑了六种常见的电力变压器故障类型,包括低温、中温和高温故障,以及部分放电、火花放电和电弧放电(T1、T2、T2、PD、D1、D2)。通过分析DGA数据中的H2、CH4、C2H6、C2H4和C2H2含量,我们可以确定数据与每种故障的隶属度,从而更准确地诊断变压器的健康状况。

这项研究的目标是为电力行业提供一种更可靠、更准确的变压器故障诊断方法,帮助工程师及时发现并解决潜在的问题,以确保电力系统的稳定和可靠运行。通过引入隶属度概念,我们期望能够提高诊断的准确性和可靠性,为变压器维护和管理提供更有效的支持。

基于溶解气体分析(DGA)的电力变压器故障诊断是一个重要的研究领域。DGA技术通过监测变压器油中的气体含量,可以帮助识别变压器内部可能存在的故障类型。其中,隶属度的概念被引入到故障诊断中,用于衡量DGA数据与不同故障模式之间的关联程度。

这项研究的目标是开发一种基于DGA数据的故障诊断方法,该方法可以为不同故障模式分配隶属度,并据此识别变压器的健康状况。通过分析DGA数据中各种气体的含量,并结合隶属度的计算,可以更准确地识别变压器可能存在的故障类型,例如局部放电、油纸绝缘老化、过热等。

这项研究的成果有望为电力行业提供更可靠、更精确的变压器故障诊断方法,有助于提前发现潜在问题并采取相应的维护措施,从而确保电力系统的可靠性和稳定性。

这段MATLAB代码提出了一种新的方法,用于利用溶解气体分析(DGA)对变压器进行故障诊断。该方法提供了一个参考故障集(即聚类中心),并通过计算DGA数据对参考故障集的隶属度来实现故障诊断。在这个方法中,总共有六种故障类型,分别是低温、中温和高温故障,以及部分放电、火花放电和电弧放电(T1、T2、T2、PD、D1、D2)。

需要诊断的DGA数据具有五个属性:H2、CH4、C2H6、C2H4和C2H2含量(单位:µL/L)。

通过计算DGA数据对参考故障的隶属度,我们可以解释需要诊断的DGA数据,隶属度表示数据属于每种故障的程度。这种方法能够为工程师提供关于变压器可能存在的不同类型故障的详细信息,有助于及时采取维护措施以避免进一步损坏。

需要注意的是,聚类中心(参考故障集)是程序的固有部分,不允许更改。保证了诊断的准确性和可靠性,确保了对变压器故障的有效识别和解决。

一、DGA技术的基本原理与核心作用

1. 故障气体生成机制

变压器内部绝缘材料(油纸复合绝缘)在局部放电、过热或电弧等故障下,会发生热分解或电化学分解,产生特征气体。例如:

  • 氢气(H₂) :反映低能量放电或局部过热(如铁芯多点接地故障)。
  • 乙炔(C₂H₂) :高能量电弧放电的标志性气体,浓度超过1 ppm即需警惕。
  • 甲烷(CH₄)、乙烯(C₂H₄) :中低温过热(150-700℃)的主要产物,常见于分接开关接触不良或绕组过热。
  • 一氧化碳(CO)和二氧化碳(CO₂) :反映固体绝缘材料(如纸板)的热老化或碳化。
2. DGA分析的核心方法
  • 关键气体法:通过特定气体浓度阈值判断故障类型,如C₂H₂>1 ppm提示电弧放电。
  • 比值法:包括 罗杰斯比率法(Rogers Ratios) 和 多恩伯格比率法(Doernenburg Ratios) ,利用气体浓度比(如CH₄/H₂、C₂H₂/C₂H₄)映射故障类型。
  • 杜瓦尔三角形/五边形法:将气体浓度归一化为百分比,通过几何分布定位故障区域(如高温过热、低能放电等)。

二、隶属度理论在故障诊断中的应用

1. 隶属度定义与数学表达

隶属度函数(Membership Function)将连续的气体浓度或比值转化为[0,1]区间内的模糊量,量化故障特征与特定类型的关联程度。例如:

  • 线性隶属函数:定义某气体浓度区间(如C₂H₂ 1-5 ppm)对“电弧放电”的隶属度从0.5递增至1。
  • 高斯隶属函数:适用于非线性关系的特征(如CO₂/CO比值反映绝缘纸老化程度)。
2. 模糊诊断矩阵构建

通过模糊关系矩阵R整合多维度DGA特征,其中元素rabrab​表示第aa个特征(如C₂H₂浓度)对第bb种故障类型(如电弧放电)的隶属度。结合最大隶属度原则阈值判定规则,实现多特征融合诊断。

3. 与传统方法的对比优势
  • 处理模糊性:解决传统比值法中“编码盲区”问题(如比值处于临界值时的误判)。
  • 动态适应性:通过隶属度调整适应不同变压器运行环境(如负荷波动、油温变化)的影响。

三、DGA与隶属度结合的典型算法实现

1. 模糊逻辑增强的故障解释矩阵(FIM)
  • 步骤
    1. 对Rogers、IEC、Duval等方法进行模糊化处理,输出各方法对故障类型的隶属度。
    2. 构建优先级矩阵,整合不同方法的优势(如Duval三角形对局部放电的高敏感性)。
    3. 通过归一化和加权融合,生成综合诊断结果,准确率较单一方法提升15%以上。
2. 机器学习与隶属度的融合
  • 案例1:TPE-LightGBM模型
    采用LASSO算法筛选DGA特征(如C₂H₂/C₂H₄、总烃含量),通过隶属度量化特征重要性,再以TPE优化LightGBM超参数,故障分类准确率达96.7%。
  • 案例2:XGBoost-SHAP可解释模型
    引入TreeSHAP框架,量化各气体特征对故障诊断的边际贡献(如C₂H₂浓度对电弧放电的隶属度贡献占32%)。
3. 混合优化算法应用
  • 改进天鹰算法(MAO)优化KELM
    结合隶属度矩阵与核极限学习机,在油浸式变压器数据集上实现95.82%的准确率,优于传统SVM(89.5%)和BP神经网络(82.3%)。

四、挑战与未来研究方向

1. 当前局限性
  • 数据依赖性:DGA数据质量受采样频率、色谱仪精度影响,需结合在线监测技术提升数据可靠性。
  • 标准不统一:不同隶属度函数的选择(如梯形、三角函数)缺乏普适性验证。
2. 智能化发展趋势
  • 数字孪生技术:构建变压器运行状态的虚拟映射,实时更新隶属度参数以适应动态故障演化。
  • 多模态数据融合:结合振动信号、红外热像等非DGA特征,扩展模糊诊断矩阵的维度。

五、结论

DGA与隶属度理论的结合,通过模糊化处理与智能算法优化,显著提升了变压器故障诊断的准确性和鲁棒性。未来需进一步突破数据质量与算法泛化能力的瓶颈,推动电力设备状态检修向智能化、预测性维护转型。

📚2 运行结果

部分代码:

function data_membership = lishudu( data_guiyihua,data_clustercenter )
%计算隶属度
%   此处显示详细说明
W=size(data_guiyihua,1);%求样本维度
P=14;
data_membership=cell(W,P);
for i=1:W   %写入基本信息

....

function [ data_guiyihua ] =guiyihua( data)
% global W P K
%对原始数据进行归一化
%   此处显示详细说明
[W,P]=size(data);%求数据维度
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%求总烃和氢烃的含量 
con=cell(W,3);%定义中间变量空元胞,第一列是编号,第二列氢烃,第三列总烃
for i=2:W
    con{i,1}=data{i,1};
    con{i,2}=0;
    for j=2:6
        con{i,2}=con{i,2}+data{i,j};
    end
    con{i,3}=con{i,2}-data{i,2};
end
data_guiyihua=cell(W,P);%定义归一化后的元胞

主函数代码:

global data_membership data_clustercenter;
load('../data/data.mat');%Import DGA data to be diagnosed,in the same the format as sample'data.mat'
load('../data/data_clustercenter.mat');%Loading reference fault set.
data_guiyihua=guiyihua(data);%Normalize the data
data_membership=membership(data_guiyihua,data_clustercenter);%Calculate membership
result();%Calculate the correct rate of diagnostic results

fileID = fopen('membership.txt','w');
formatSpec1 = '%d %2.2f %2.2f %2.2f %2.2f %2.2f %s %s %2.4f %2.4f %2.4f %2.4f %2.4f %2.4f %s\n\n';
formatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s \n\n';
[nrows,ncols] = size(data_membership);
fprintf(fileID,formatSpec,data_membership{1,:});
for row = 2:nrows
    fprintf(fileID,formatSpec1,data_membership{row,:});
end
fclose(fileID);
copyfile('membership.txt', '../results/')
type membership.txt
type diagnosis_result.txt

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]谢可夫,邓建国.变压器故障模糊诊断系统[J].湖南师范大学自然科学学报, 2004, 27(1):5.DOI:10.3969/j.issn.1000-2537.2004.01.011.

[2]熊浩孙才新廖瑞金李剑杜林.基于核可能性聚类算法和油中溶解气体分析的电力变压器故障诊断研究[J].中国电机工程学报, 2005, 25(20):162-166.

[3]汤玉龙.基于模糊神经网络的变压器故障诊断技术研究[D].湖南科技大学[2024-01-21].

🌈4 Matlab代码、数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值