算法学习笔记:Bi-LSTM和Bi-GRU

本文介绍了双向长短期记忆网络(Bi-LSTM)和双向门控循环单元(Bi-GRU)在时间序列预测中的应用,重点阐述了它们的结构、优势以及在Keras中的实现代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章的作为前几篇RNN\LSTM\RNN的后续之作,主要就是补充一个这两个哥的变体,想详细了解RNN\LSTM\GRU的详细理论和公式推导以及代码的请前往下面链接:

算法学习笔记:循环神经网络(Recurrent Neural Network)-CSDN博客

算法学习笔记:长短期记忆网络(Long Short Term Memory Network)-CSDN博客

算法学习笔记:门控循环单元(Gate Recurrent Unit)-CSDN博客

一、Bi-LSTM

Bi-LSTM(Bidirectional Long Short Term Memory)网络是是一种基于长短期记忆网络(LSTM)的时间序列预测方法;它结合了双向模型和LSTM的门控机制,由2个独立的LSTM网络构成。当Bi-LSTM处理序列数据时,输入序列会分别以正序和逆序输入到2个LSTM网络中进行特征提取,并将将2个输出向量(即提取后的特征向量)进行拼接后形成的输出向量作为该时间步的最终输出

(其实就是两个LSTM组合在一起,具体的原理和结构和LSTM一样啦)

Bi-LSTM的模型设计理念是使t时刻所获得特征数据同时拥有过去和将来之间的信息;此外,值得一提的是,Bi-LSTM中的2个LSTM网络参数是相互独立的,它们只共享同一批序列数据。

二、Bi-GRU

Bi-GRU(Bidirectional Gated Recurrent Unit)是一种基于门控循环单元(GRU)的时间序列预测方法;它结合了双向模型和门控机制,整体结构与单元体结构与GRU一致,因此也能够有效地捕捉时间序列数据中的时序关系。Bi-GRU的整体结构由两个方向的GRU网络组成,一个网络从前向后处理时间序列数据,另一个网络从后向前处理时间序列数据;这种双向结构可以同时捕捉到过去和未来的信息,从而更全面地建模时间序列数据中的时序关系。

(也就是两个GRU组会在一起啦,结构啥的都一样!)

三、Bi-LSTM和Bi-GRU源码

import numpy as np
from numpy import savetxt
import pandas as pd
from pandas.plotting import register_matplotlib_converters
from pylab import rcParams
import matplotlib.pyplot as plt
from matplotlib import rc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.metrics import r2_score
import tensorflow as tf
from tensorflow import keras
from keras.optimizers import Adam,RMSprop
import os
import tensorflow as tf
tf.config.set_visible_devices(tf.config.list_physical_devices('GPU'), 'GPU')
register_matplotlib_converters()
#plt.rcParams["font.sans-serif"] = [""]# 指定默认字体
pd.set_option('display.max_columns', None)  # 结果显示所有列
pd.set_option('display.max_rows', None)  # 结果显示所行行
#>>>>>>>>>>>>数据预处理
#1.训练集(New-train)数据处理
source = 'New-train.csv'
df_train = pd.read_csv(source, index_col=None)
df_train = df_train[['设置你的数据表头']] 
 
source = 'New-test.csv'
df_test = pd.read_csv(source, index_col=None)
df_test = df_test[['设置你的数据表头']] 
 
train_size = int(len(df_train))
test_size = int(len(df_test))
train = df_train.iloc[0:train_size]
test = df_test.iloc[0:test_size]
print(len(train), len(test))
 
def training_data(X, y, time_steps=1):
    Xs, ys = [], []
    for i in range(len(X) - time_steps):
        v = X.iloc[i:(i + time_steps)].values
        Xs.append(v)
        ys.append(y.iloc[i + time_steps])
    return np.array(Xs), np.array(ys)
 
 
time_steps = 10
X_train, y_train = training_data(train.loc[:, '设置你的数据表头'], train.*, time_steps)
x_test, y_test = training_data(test.loc[:,'设置你的数据表头'], test.*, time_steps)
 
 
#构建模型
# 单层双尾lstm
def model_BiLSTM(units):
    model = keras.Sequential()
    #Input Layer
    model.add(keras.layers.Bidirectional(
        keras.layers.LSTM(
            units=units,
            activation="relu",
            input_shape=(X_train.shape[1], X_train.shape[2])
            )))
    model.add(keras.layers.Dropout(0.2))
    #Hidden Layer
    model.add(keras.layers.Dense(1))
    model.compile(loss='mse', optimizer=Adam(learning_rate=0.001, clipvalue = 0.2))
    return model

# 单层双尾GRU
def model_BiGRU(units):
    model = keras.Sequential()
    #input
    model.add(keras.layers.Bidirectional(
        keras.layers.GRU(
            units=units,
            activation="relu",
            input_shape=(X_train.shape[1], X_train.shape[2])
        )))
    model.add(keras.layers.Dropout(0.2))
    model.add(keras.layers.Dense(1))
    model.compile(loss='mse', optimizer='adam')
    return model
 
#训练模型
def fit_model(model):
    #早停机制,防止过拟合
    early_stop = keras.callbacks.EarlyStopping(
        monitor='val_loss',
        min_delta=0.0,#min_delta=0.0 表示如果训练过程中的指标没有发生任何改善,即使改善非常微小,也会被视为没有显著改善
        patience=2000)#表示如果在连续的 2000 个 epoch 中,指标没有超过 min_delta 的改善,训练将被提前停止
        history = model.fit(  # 在调用model.fit()方法时,模型会根据训练数据进行参数更新,并在训练过程中逐渐优化模型的性能
        X_train, y_train, # 当训练完成后,模型的参数就被更新为训练过程中得到的最优值
        epochs=400,         # 此时model已经是fit之后的model,直接model.predict即可(千万不要model=model.fit(),然后再model.predict)
        validation_split=0.1,   
        batch_size=12600,
        shuffle=False,
        callbacks=[early_stop])
    return history
 
lstm_n64 = model_BiLSTM(64)
GRU = model_BiGRU(64)
#这里只是写了训练模型的代码,预测的话要根据自己的数据结构以及想要的效果来写喔

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值