这个Agent其实包含很多大模型懂吧,大模型只是一个大模型而已,Agent是一个智能体,大模型只是它的一部分,类似大脑的作用,在它的一些工具中充当大脑的作用,比如我这个Agent就是本来就有一个大模型在跟用户交流,只不过用户触发到某个特殊任务后触发工作流执行,这个工作流是针对一个特定任务的执行逻辑和步骤,里面也有一个大模型用来配合解决这个特定的任务,are you ok?
上一版的Agent有些缺点
用户提问模糊,指代不明:在工作流中加入意图识别
知识库内容太多,召回片段匹配度低:分为多个知识库
大模型回复没有上下文信息:增加大模型携带上下文轮数
工作流是没有对话历史的,只有对话流才有对话历史
改成对话流之后,才能在对话流里面的大模型开启多轮对话模式。
并且如果有问题,可以随时在对话流里面查看输入和输出,慢慢调试看看哪个参数变量有问题
对话流的描述其实就是让这个智能体理解什么情况该调用此对话流
你要用意图识别来判别何时调用对话流,直接输入用户的对话作为意图识别的参数,然后进入意图匹配后进入不同的知识库检索,更加高效准确
但是出来后的输出不能直接进大模型,要做一个变量聚合,聚合策略就是返回每个分组中的第一个非空的值,不做个变量聚合,知识库出来可能会报错,因为可能你只用了一个知识库的输出其他没用的话会报错,设置这玩意,他就会输出这三个变量中第一个非空的变量~(相当于想多个知识库就要添加一个变量聚合再丢给大模型咯)
如何三个意图都匹配不上,那就在其他意图添加一个问答节点,告诉用户,我没有识别到你的意图,请确认你想咨询什么?
原来什么时候才去调用工作流,在Agent的人设和回答逻辑里面就需要确定了啊!!还在这搞半天呢你~
这个prompt是真的有点笨笨的!!! 没用prompt真的它都不懂你在说啥嘞!!多实战啦!