D. 货币系统 (线性dp,背包)

D. 货币系统 (100)
Time Limit: 1s   Memory Limit: 256
Description
在网友的国度中共有 n n n 种不同面额的货币,第 i i i 种货币的面额为 a [ i ] a[i] a[i] ,你可以假设每一种货币都有无穷多张。为了方便,把货币种数 为 n n n 、面额数组为 a [ 1.. n ] a[1 . . n] a[1..n] 的货币系统记作 ( n , a ) (n, a) (n,a)
在一个完善的货币系统中,每一个非负整数的金额 x x x 都应该可以被表示出,即对每一个非负整数 x x x ,都存在 n n n 个非负整数 t [ i ] t[i] t[i] 满足 a [ i ] × t [ i ] a[i] \times t[i] a[i]×t[i] 的和为 x x x 。然而,在网友的国度中,货币系统可能是不完善的,即可能存在金额 x x x 不能被该货币系统表示出。如在货币系 统 n = 3 , a = [ 2 , 5 , 9 ] n=3, a=[2,5,9] n=3,a=[2,5,9] 中,金额 1,3 就无法被表示出来。
两个货币系统 ( n , a ) (n, a) (n,a) ( m , b ) (m, b) (m,b) 是等价的,当且仅当对于任意非负整数 x x x ,它要么均可以被两个货币系统表出,要么不能被其中任何 一个表出。
现在网友们打算简化一下货币系统。他们希望找到一个货币系统 ( m , b ) (m, b) (m,b) ,满足 ( m , b ) (m, b) (m,b) 与原来的货币系统 ( n , a ) (n, a) (n,a) 等价,且 m m m 尽可能 的小。他们希望你来协助完成这个艰巨的任务:找到最小的 m m m
Input Data
输入的第一行包含一个整数 T T T ,表示数据的组数。接下来按昭如下格式分别给出 T T T 组数据。 每组数据的第一行包含一个正整数 n n n 。接下来一行包含 n n n 个由空格隔开的正整数 a [ i ] a[i] a[i]
Output Data
输出共有 T T T 行,对于每组数据,输出一行一个正整数,表示所有与 ( n , a ) (n, a) (n,a) 等价的货币系统 ( m , b ) (m, b) (m,b) 中,最小的 m m m
**Tips:**背包问题,看哪些价值i是不能凑出来的,这个就代表了背包容量为i的价值是1.


int Q, n, mx;
int a[115], dp[N];
signed main()
{
    ios::sync_with_stdio(0), cin.tie(0);

    int Q;
    cin >> Q;
    while (Q--)
    {
        memset(dp, 0xc0, sizeof(dp));
        cin >> n; dp[0] = 0; mx = -INF;
        for (int i = 1; i <= n; i++)
        {
            cin >> a[i];
            mx = max(mx, a[i]);
        }
        for (int i = 1; i <= n; i++)
            for (int j = a[i]; j <= mx; j++)
                dp[j] = max(dp[j], dp[j - a[i]] + 1);
        int res = 0;
        for (int i = 1; i <= n; i++)
            if (dp[a[i]] == 1) ++res;
        cout << res << "\n";
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值