⛄一、运行结果


⛄二、哈里斯鹰算法优化最小二乘支持向量机HHO-LLSVM数据回归预测
1 哈里斯鹰算法
摘要:2019 年 Heidari 等人提出哈里斯鹰优化算法(Harris Hawk Optimization, HHO),该算法有较强的全局搜索能力,并且需要调节的参数较少的优点。
1 算法原理
哈里斯鹰优化算法是一种模拟哈里斯鹰捕食行为的智能优化算法,主要由 3 部分组成:搜索阶段、搜索与开发的转换和开发阶段。
1.1 搜索阶段
哈里斯鹰随机栖息在某个地方,通过 2 种策略找到猎物;
1.2 搜索与开发的转换
HHO 算法根据猎物的逃逸能量在搜索和不同的开发行为之间转换;
1.3 开发阶段
本文介绍了利用哈里斯鹰算法优化的最小二乘支持向量机(HHO-LSSVM)进行数据回归预测的方法。详细阐述了哈里斯鹰算法的原理和步骤,并提供了部分Matlab源代码。HHO-LSSVM通过优化模型参数,提高了预测的准确性和可靠性。
订阅专栏 解锁全文
68

被折叠的 条评论
为什么被折叠?



