【LSSVM回归预测】哈里斯鹰算法优化最小二乘支持向量机HHO-LSSVM数据回归预测【含Matlab源码 3426期】

本文介绍了利用哈里斯鹰算法优化的最小二乘支持向量机(HHO-LSSVM)进行数据回归预测的方法。详细阐述了哈里斯鹰算法的原理和步骤,并提供了部分Matlab源代码。HHO-LSSVM通过优化模型参数,提高了预测的准确性和可靠性。
摘要由CSDN通过智能技术生成

⛄一、运行结果

在这里插入图片描述
在这里插入图片描述

⛄二、哈里斯鹰算法优化最小二乘支持向量机HHO-LLSVM数据回归预测

1 哈里斯鹰算法
摘要:2019 年 Heidari 等人提出哈里斯鹰优化算法(Harris Hawk Optimization, HHO),该算法有较强的全局搜索能力,并且需要调节的参数较少的优点。
1 算法原理
哈里斯鹰优化算法是一种模拟哈里斯鹰捕食行为的智能优化算法,主要由 3 部分组成:搜索阶段、搜索与开发的转换和开发阶段。

1.1 搜索阶段
哈里斯鹰随机栖息在某个地方,通过 2 种策略找到猎物;

1.2 搜索与开发的转换
HHO 算法根据猎物的逃逸能量在搜索和不同的开发行为之间转换;

1.3 开发阶段

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值