💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab领域博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🏫个人主页:Matlab领域
🏆代码获取方式:
CSDN Matlab领域—代码获取方式
🚅座右铭:路漫漫其修远兮,吾将上下而求索。
更多Matlab信号处理仿真内容点击👇
①Matlab信号处理(高阶版)
②付费专栏Matlab信号处理(进阶版)
③付费专栏Matlab信号处理(初级版)
⛳️关注CSDN Matlab领域,更多资源等你来!!
⛄一、脉冲压缩雷达干扰
1 雷达干扰概述
雷达干扰是一种破坏和扰乱敌方雷达监测我方目标信息的战术、技术措施的
统称。雷达干扰按是否发射电磁信号可以分为有源干扰和无源干扰。雷达有源干扰可以分为:压制式干扰和欺骗性干扰。压制式干扰是指使雷达接收机中干扰背景和目标回波重叠在一起,甚至是完全覆盖真实目标,使雷达难以从中检测真实目标信息。欺骗性干扰是指雷达接收机中干扰信号和目标回波信号难以区分,以假乱真,使雷达无法分辨真假目标,甚至是把假目标当成是真实目标。雷达无源干扰也可以按干扰效果分为压制式干扰和欺骗式子干扰。无源压制干扰是利用箔条和类似物对雷达信号的散射来对雷达实施干扰。无源欺骗干扰是产生一些假物体来诱导雷达,从而达到欺骗的干扰效果皿。
现代雷达干扰机的作战方式已经从传统的点对点的作战,发展成了点对多甚
至是多对多的作战方式。图2是雷达干扰机的基本组成。为了合理、有序地对抗各种威胁雷达,在一部干扰机中可能配备多种干扰资源(能够按照控制命令产生干扰信号的设备),它们在于扰决策、干扰资源管理设备的控制下协调、有序的工作,最后通过功率合成和波束形成,将干扰信号辐射出去。
根据干扰信号的产生原理,干扰资源主要分为:引导式干扰和转发式干扰两
种。引导式干扰资源的信号由自身的压控射频振荡器(VCO)产生,干扰信号产生器根据干扰决策命令中的参数调制命令,对产生的信号加以调频,调幅,调相后辐射出去;转发式干扰是本论文研究的主要内容,其主要用于雷达的自卫干扰方面,它充分利用截获到的雷达辐射信号,经过数字射频存储器(DRFM)处理,将雷达脉冲信号保存足够的时间,当需要时将其取出,经过相应的时延、幅度和相位上的干扰调制,由功率合成与波束合成网络辐射到雷达接收天线后进入雷达接收机,这种干扰方式在对付脉冲压缩雷达方面能取得较好的干扰效果。以上两者的侧重点不同,引导式干扰对雷达侦察设备的要求较高,需要精确知道雷达信号的参数信息,才能产生合适的干扰信号。转发式干扰则是充分利用雷达信号本身的特性,然后再加入一定的调制后转发出去,便于灵活产生干扰样式。
2 线性调频雷达的脉冲压缩
2.1 脉冲压缩的基本原理
伴随了雷达新技术的发展,对雷达的作用距离、分辨能力、测量精度等方面
的性能指标提出了更高的要求。根据雷达信号理论,测距精度和距离分辨力主要取决于信号的频率结构,为了使测距精度和距离分辨力得到提高,就需要雷达信号具有大的带宽。而测速精度和速度分辨力主要取决于信号的时域结构,为了提高测速精度和速度分辨力,就需要信号具有大的时宽。同时,要提高雷达对远距离目标的发现能力,要求信号要具有大的能量。但是,对于一般的单载频信号,雷达的时宽带宽接近于1,因此很难同时满足大时宽带宽的要求。所以,对于这类信号,测距精度和距离分辨力同测速精度和速度分辨力以及雷达作用距离之间很难同时兼顾三者。
脉冲压缩技术是匹配滤波理论和相关接收理论的一个很好的实际应用。它的提出很好的解决了这样的一个问题:在发射端发射大时宽、带宽信号,以提高信号的速度测量精度和速度分辨力,而在接收端,将宽脉冲信号压缩为窄脉冲,以提高雷达对目标的距离分辨精度和距离分辨力。
2.2 线性调频信号频谱结构
线性调频信号是常见的通过频率调制后获得大时宽一带宽的信号。这种信号的特点是利用频率一时延不同来实现对雷达脉冲压缩的。LFM信号的匹配滤波器对回波信号的多普勒频移不敏感,即使回波信号存在较大的多普勒频移,原来的匹配滤波器仍能够起到脉冲压缩的作用,只是会出现~定压缩处理增益的衰减。但是,接收机的输出响应会出现与多普勒频移成正比的时延。所以干扰方很容易利用这个特点来对雷达信号进行多普勒频率调制,产生干扰信号,从而形成距离假目标欺骗干扰效果,这是这类信号的缺点。
⛄二、部分源代码
% smart noise
close all
clear all
clc
% % fid = fopen(‘test.txt’);
% % data = fscanf(fid,‘%d’);
% % return;
type_flag = 0; %0,针对脉冲压缩雷达的干扰;1,针对PD雷达的灵巧噪声干扰
if type_flag == 1
flag = 4; %0,三角波调频干扰信号;1,%锯齿波调频干扰信号;2,马鞍型噪声干扰信号;3,噪声调相干扰信号;4,噪声调频干扰信号
%============================================
T = 2e-6;
PRT = 10e-6;
f0 = 15e6;
fs = 50e6;
N_MTD = 1024 ;
t1 = 0:1/fs:T;
N_PRT = floor(fs*PRT);
chirp0 = exp(j*2*pi*f0*t1 + j*pi/5);
chirp1 = [chirp0, zeros(1,N_PRT - length(chirp0))];
chirp = repmat(chirp1,1,N_MTD);
N = length(chirp);
figure(1),
subplot(211),plot(real(chirp));grid on;
subplot(212),plot(abs(fft(chirp,N)));grid on;
%============================================
if flag == 1
%锯齿波调频干扰信号
B = 3e3;
K = B/(N_MTD*PRT);
t2 = 0:1/fs:(N-1)/fs;
noise = exp(j*pi*K*t2.^2);
Jsignal = chirp.*noise;
fftJ = fft(Jsignal);
maxFFTj = max(abs(fftJ));
figure(2),plot(real(Jsignal));grid on;
axisX = 2*(-N/2:N/2-1)/N;
figure(3),
subplot(211),plot(axisX,fftshift(abs(fftJ)),'k');grid on;
xlabel('归一化频率');ylabel('幅度');axis([-1 1 0 2.5e4]);
subplot(212),plot(axisX,fftshift(abs(fftJ)),'k');grid on;
xlabel('归一化频率');ylabel('幅度');axis([0.594 0.606 0 2.5e4]);
end
if flag == 0
%三角波调频干扰信号
B = 3e3;
K = B/(N_MTD*PRT);
t2 = 0:1/fs:(N/2-1)/fs;
noise = [exp(j*pi*K*t2.^2) exp(j*2*pi*B*t2 + j*pi*(-K)*t2.^2)];
Jsignal = chirp.*noise;
fftJ = fft(Jsignal);
maxFFTj = max(abs(fftJ));
figure(2),plot(real(Jsignal));grid on;
axisX = 2*(-N/2:N/2-1)/N;
figure(3),
subplot(211),plot(axisX,fftshift(abs(fftJ)),'k');grid on;
xlabel('归一化频率');ylabel('幅度');axis([-1 1 0 2.5e4]);
subplot(212),plot(axisX,fftshift(abs(fftJ)),'k');grid on;
xlabel('归一化频率');ylabel('幅度');axis([0.594 0.606 0 2.5e4]);
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 王杰.脉冲压缩雷达的干扰技术研究[D].电子科技大学. 2010
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置