【大模型智能体】Agent2Agent协议加上MCP协议也许会成为未来Agent智能体系统的标配

        之前在文章《基于Claude MCP协议的智能体落地示例》、《MCP(Model Context Protocol) 大模型智能体第一个开源标准协议》我们已经对MCP协议做了介绍,MCP提供了将大模型连接到不同数据源和工具的标准方式,包括内容仓库、商业工具和开发环境。

        以上解决的是智能体自身如何利用其他工具或者数据源的标准,那么智能体与智能体之间是否也可以实现协同?

        智能体正通过自主处理日常重复性或复杂任务,为人类生产力提升带来全新可能。当前,大量的企业正加速部署自主智能体以扩展、自动化和优化各类业务流程——从新笔记本电脑采购,到客服辅助,再到供应链规划支持。

        要释放智能体的最大价值,关键在于实现跨数据孤岛和应用系统的动态多智能体协作。让不同厂商、不同框架构建的智能体实现互操作,将显著提升自主性、产生生产力乘数效应,同时降低长期运营成本。

        Agent2Agent(A2A)开放协议正是为了支持AI智能体在不同企业平台或应用间安全通信、交换信息并协同行动,使客户能够跨整个企业应用生态调度智能体资源而推出的。 

       A2A作为开放协议,与Anthropic的模型上下文协议(MCP)形成互补,并借鉴了谷歌在智能体系统规模化方面的经验。

        解决大规模多智能体系统部署中的核心挑战:开发者可构建能与任何A2A协议智能体连接的智能体,用户可灵活组合不同供应商的智能体,企业则获得跨平台/云环境的标准管理方案。

        A2A设计五大原则:

  1. 强化自主能力:支持非结构化模态协作,不依赖共享内存/工具/上下文

  2. 兼容现有标准:基于HTTP、SSE、JSON-RPC等广泛采用的标准

  3. 默认安全机制:支持企业级认证授权,与OpenAPI认证方案对齐

  4. 长时任务支持:适应从即时任务到需人工介入的深度研究(耗时数小时/天)

  5. 多模态兼容:支持音频、视频流等非文本模态

        A2A工作原理:

通过"客户端智能体"与"远程智能体"的交互实现四大核心功能:


• 能力发现:通过JSON格式"智能体卡片"广告服务能力
• 任务管理:定义标准化"任务对象"及其生命周期,支持即时/长时任务同步
• 智能体协作:通过消息传递上下文、回复、产出物(artifact)或用户指令
• 体验协商:消息"部件"(parts)支持生成图像等内容,可协商UI呈现形式(iframe/视频/网页表单等)

        示例如下:候选人筛选

A2A_demo_v4

        通过A2A协同,招聘流程可大幅简化。在Agentspace等统一界面中,招聘经理只需向自己的智能体下达指令——要求寻找符合职位描述、地点和技能要求的候选人。该智能体会自动与其他专业智能体交互,获取潜在人选推荐。用户收到推荐后,可继续指挥智能体安排面试,从而优化整个筛选流程。面试结束后,另一个智能体将自动启动背景调查。这个案例生动展现了AI智能体如何跨系统协作,高效完成人才选拔。

注:从个人角度来看,A2A协议其实是一种实现多智能体协同工作的体系协议,结合MCP协议,使得人、智能体、工具实现了联接闭环。

<think>好的,用户想找关于如何使用MCP调用工具来开发智能体的教程。首先,我需要确认MCP的具体信息。根据用户提供的引用,MCP是对标Anthropic的开源智能体通信协议,支持去中心化身份认证和数据通信[^1]。接下来,我得考虑用户可能的背景,可能是开发者或技术爱好者,需要具体的步骤和资源。 用户的需求明确,需要教程,但可能缺乏相关的中文资料。我应该先检查是否有官方文档或开源仓库,比如GitHub,通常这些地方会有入门指南和示例。另外,可能需要分步骤说明,比如环境配置、协议集成、工具调用、协作开发等。 还要考虑用户可能遇到的问题,比如环境搭建的困难,代码示例的缺失,或者如何测试智能体通信。需要确保回答中包含这些方面的指导,并推荐社区或论坛作为进一步支持的资源。 最后,生成相关问题时要围绕MCP的应用和开发,比如工具调用机制、身份认证实现、性能优化等,帮助用户深入理解。</think>### MCP调用工具开发智能体教程 MCP(Multi-Agent Communication Protocol)作为开源智能体通信协议,支持去中心化身份认证与数据通信,其工具调用开发流程可分为以下步骤: 1. **环境配置** - 安装Python 3.8+环境 - 克隆官方仓库:`git clone https://github.com/mcp-framework/mcp-core` - 安装依赖:`pip install mcp-toolkit` 2. **协议集成** ```python from mcp import AgentNode, ToolRegistry class MyAgent(AgentNode): def __init__(self): self.tools = ToolRegistry() self.register_tool("data_parser", self.parse_data) def parse_data(self, input_json): # 工具方法实现 return processed_data ``` 3. **工具调用** ```python # 跨智能体工具调用示例 response = self.request_tool( target_agent="data_processor@network1", tool_name="data_encoder", params={"raw_data": sensor_data}, timeout=5000 ) ``` 4. **协作开发** - 使用`MCP-SIM`模拟器构建测试网络 - 通过`mcp-cli`命令行工具监控通信流量 - 配置文件采用YAML格式定义网络拓扑
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源泉的小广场

感谢大佬的支持和鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值