之前在文章《基于Claude MCP协议的智能体落地示例》、《MCP(Model Context Protocol) 大模型智能体第一个开源标准协议》我们已经对MCP协议做了介绍,MCP提供了将大模型连接到不同数据源和工具的标准方式,包括内容仓库、商业工具和开发环境。
以上解决的是智能体自身如何利用其他工具或者数据源的标准,那么智能体与智能体之间是否也可以实现协同?
智能体正通过自主处理日常重复性或复杂任务,为人类生产力提升带来全新可能。当前,大量的企业正加速部署自主智能体以扩展、自动化和优化各类业务流程——从新笔记本电脑采购,到客服辅助,再到供应链规划支持。
要释放智能体的最大价值,关键在于实现跨数据孤岛和应用系统的动态多智能体协作。让不同厂商、不同框架构建的智能体实现互操作,将显著提升自主性、产生生产力乘数效应,同时降低长期运营成本。
Agent2Agent(A2A)开放协议正是为了支持AI智能体在不同企业平台或应用间安全通信、交换信息并协同行动,使客户能够跨整个企业应用生态调度智能体资源而推出的。
A2A作为开放协议,与Anthropic的模型上下文协议(MCP)形成互补,并借鉴了谷歌在智能体系统规模化方面的经验。
解决大规模多智能体系统部署中的核心挑战:开发者可构建能与任何A2A协议智能体连接的智能体,用户可灵活组合不同供应商的智能体,企业则获得跨平台/云环境的标准管理方案。
A2A设计五大原则:
强化自主能力:支持非结构化模态协作,不依赖共享内存/工具/上下文
兼容现有标准:基于HTTP、SSE、JSON-RPC等广泛采用的标准
默认安全机制:支持企业级认证授权,与OpenAPI认证方案对齐
长时任务支持:适应从即时任务到需人工介入的深度研究(耗时数小时/天)
多模态兼容:支持音频、视频流等非文本模态
A2A工作原理:
通过"客户端智能体"与"远程智能体"的交互实现四大核心功能:
• 能力发现:通过JSON格式"智能体卡片"广告服务能力
• 任务管理:定义标准化"任务对象"及其生命周期,支持即时/长时任务同步
• 智能体协作:通过消息传递上下文、回复、产出物(artifact)或用户指令
• 体验协商:消息"部件"(parts)支持生成图像等内容,可协商UI呈现形式(iframe/视频/网页表单等)
示例如下:候选人筛选
A2A_demo_v4
通过A2A协同,招聘流程可大幅简化。在Agentspace等统一界面中,招聘经理只需向自己的智能体下达指令——要求寻找符合职位描述、地点和技能要求的候选人。该智能体会自动与其他专业智能体交互,获取潜在人选推荐。用户收到推荐后,可继续指挥智能体安排面试,从而优化整个筛选流程。面试结束后,另一个智能体将自动启动背景调查。这个案例生动展现了AI智能体如何跨系统协作,高效完成人才选拔。
注:从个人角度来看,A2A协议其实是一种实现多智能体协同工作的体系协议,结合MCP协议,使得人、智能体、工具实现了联接闭环。