离散小波变换DWT-小波变换和脑电信号特征提取(Matlab代码实现)

           目录

💥1 概述

📚2 运行结果

🎉3 参考文献

👨‍💻4 Matlab代码


💥1 概述

小波变换是从20世纪80年代起逐渐发展成熟的一项数学应用技术,具有对时间—频率的双重分析和多分辨率分析能力,目前已经广泛应用于图像处理、模式识别等多个领域。小波变换的窗口大小固定但形状可改变,因此能够满足时域—频域局部化分析要求。离散小波变换比连续小波变换的去噪效果更好,更适用于实际应用。

小波变换首先通过分解信号,使信号的能量集中在一些大的小波系数中,而噪声的能量分布于整个小波域内;然后通过阈值降噪,选择合适的阈值将有用信号的系数保留,将噪声信号的系数置零,从而去除噪声;最后再对经过阈值降噪后的系数进行重构,得到去除噪声后的信号。

常用的小波基函数有Meyer小波、Coiflet(coif N)小波、Daubechies(db N)小波等。为得到较好的去噪效果,所选取的小波基函数在对心电信号进行分解时,应尽量保留心电信号中的有用分量,同时使噪声分解对应的小波系数差异尽可能大。Coiflet4小波基与心电信号的波形最为相似,同时与输出信号具有良好的相关性,重构后的信号信噪比大、均方误差小,因此本文选用Coiflet4小波基进行小波分解。

📚2 运行结果

 

 

 

 

 

 

 

🎉3 参考文献

[1]赵薇. 基于图卷积的运动想象脑电信号分类技术研究[D].河北师范大学,2022.DOI:10.27110/d.cnki.ghsfu.2022.000058.

👨‍💻4 Matlab代码

主函数部分代码:

% Extract Discrete Wavelet Transform (DWT) Feature
close all; clear; clc;

load dataset_BCIcomp1.mat
Y=y_train;

% Range is 0 to 9 sec
startS=0;
endS=9;
wStep=1;
wRange=9;

X=extractDWT(x_train,startS,endS,wStep,wRange);
T=extractDWT(x_test,startS,endS,wStep,wRange);
save dataDWT.mat X Y T


color_L = [0 102 255] ./ 255;
color_R = [255, 0, 102] ./ 255;

pos = find(Y==1);
plot(X(pos,1),X(pos,2),'x','Color',color_L,'LineWidth',2);

hold on
pos = find(Y==2);
plot(X(pos,1),X(pos,2),'o','Color',color_R,'LineWidth',2);

legend('Left Hand','Right Hand')
xlabel('C3','fontweight','bold')
ylabel('C4','fontweight','bold')

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
f1=50; % 频率1 f2=100; % 频率2 fs=2*(f1+f2); % 采样频率 Ts=1/fs; % 采样间隔 N=120; % 采样点数 n=1:N; y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合 figure(1) plot(y); title('两个正弦信号') figure(2) stem(abs(fft(y))); title('两信号频谱') %% 2.小波滤波器谱分析 h=wfilters('db30','l'); % 低通 g=wfilters('db30','h'); % 高通 h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察) g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察) figure(3); stem(abs(fft(h))); title('低通滤波器图'); figure(4); stem(abs(fft(g))); title('高通滤波器图') %% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现) sig1=ifft(fft(y).*fft(h)); % 低通(低频分量) sig2=ifft(fft(y).*fft(g)); % 高通(高频分量) figure(5); % 信号图 subplot(2,1,1) plot(real(sig1)); title('分解信号1') subplot(2,1,2) plot(real(sig2)); title('分解信号2') figure(6); % 频谱图 subplot(2,1,1) stem(abs(fft(sig1))); title('分解信号1频谱') subplot(2,1,2) stem(abs(fft(sig2))); title('分解信号2频谱') %% 4.MALLET重构算法 sig1=dyaddown(sig1); % 2抽取 sig2=dyaddown(sig2); % 2抽取 sig1=dyadup(sig1); % 2插值 sig2=dyadup(sig2); % 2插值 sig1=sig1(1,[1:N]); % 去掉最后一个零 sig2=sig2(1,[1:N]); % 去掉最后一个零 hr=h(end:-1:1); % 重构低通 gr=g(end:-1:1); % 重构高通 hr=circshift(hr',1)'; % 位置调整圆周右移一位 gr=circshift(gr',1)'; % 位置调整圆周右移一位 sig1=ifft(fft(hr).*fft(sig1)); % 低频 sig2=ifft(fft(gr).*fft(sig2)); % 高频 sig=sig1+sig2; % 源信号 %% 5.比较 figure(7); subplot(2,1,1) plot(real(sig1)); title('重构低频信号'); subplot(2,1,2) plot(real(sig2)); title('重构高频信号'); figure(8); subplot(2,1,1) stem(abs(fft(sig1))); title('重构低频信号频谱'); subplot(2,1,2) stem(abs(fft(sig2))); title('重构高频信号频谱'); figure(9) plot(real(sig),'r','linewidth',2); hold on; plot(y); legend('重构信号','原始信号') title('重构信号与原始信号比较') f1=50; % 频率1 f2=100; % 频率2 fs=2*(f1+f2); % 采样频率 Ts=1/fs; % 采样间隔 N=120; % 采样点数 n=1:N; y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合 figure(1) plot(y); title('两个正弦信号') figure(2) stem(abs(fft(y))); title('两信号频谱') %% 2.小波滤波器谱分析 h=wfilters('db30','l'); % 低通 g=wfilters('db30','h'); % 高通 h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察) g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察) figure(3); stem(abs(fft(h))); title('低通滤波器图'); figure(4); stem(abs(fft(g))); title('高通滤波器图') %% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现) sig1=ifft(fft(y).*fft(h)); % 低通(低频分量) sig2=ifft(fft(y).*fft(g)); % 高通(高频分量) figure(5); % 信号图 subplot(2,1,1) plot(real(sig1)); title('分解信号1') subplot(2,1,2) plot(real(sig2)); title('分解信号2') figure(6); % 频谱图 subplot(2,1,1) stem(abs(fft(sig1))); title('分解信号1频谱') subplot(2,1,2) stem(abs(fft(sig2))); title('分解信号2频谱') %% 4.MALLET重构算法 sig1=dyaddown(sig1); % 2抽取 sig2=dyaddown(sig2); % 2抽取 sig1=dyadup(sig1); % 2插值 sig2=dyadup(sig2); % 2插值 sig1=sig1(1,[1:N]); % 去掉最后一个零 sig2=sig2(1,[1:N]); % 去掉最后一个零 hr=h(end:-1:1); % 重构低通 gr=g(end:-1:1); % 重构高通 hr=circshift(hr',1)'; % 位置调整圆周右移一位 gr=circshift(gr',1)'; % 位置调整圆周右移一位 sig1=ifft(fft(hr).*fft(sig1)); % 低频 sig2=ifft(fft(gr).*fft(sig2)); % 高频 sig=sig1+sig2; % 源信号 %% 5.比较 figure(7); subplot(2,1,1) plot(real(sig1)); title('重构低频信号'); subplot(2,1,2) plot(real(sig2)); title('重构高频信号'); figure(8); subplot(2,1,1) stem(abs(fft(sig1))); title('重构低频信号频谱'); subplot(2,1,2) stem(abs(fft(sig2))); title('重构高频信号频谱'); figure(9) plot(real(sig),'r','linewidth',2); hold on; plot(y); legend('重构信号','原始信号') title('重构信号与原始信号比较')
Matlab中进行电信号离散小波变换,你可以按照以下步骤进行操作: 1. 定义电信号数据:首先,你需要将电信号数据加载到Matlab中。可以使用Matlab的文件读取函数(如`load`或`csvread`)来读取电信号数据。 2. 准备小波基函数:根据引用中的建议,选择合适的小波基函数进行离散小波变换。在Matlab中,你可以使用Wavelet Toolbox提供的函数来获得常用的小波基函数(如Meyer小波、Coiflet小波和Daubechies小波等)。对于Coiflet4小波基,你可以使用`wfilters`函数来获取其相关系数。 3. 进行离散小波变换:将电信号数据传入`dwt`函数中,该函数会将信号分解为多个尺度的小波系数。你需要指定小波基函数和分解的层数。例如,使用Coiflet4小波基进行2层分解的代码如下: ```matlab [c, l = wavedec(data, 2, 'coif4'); ``` 这里的`data`是你加载的电信号数据,`c`是小波系数向量,`l`是每个尺度的小波系数长度。 4. 进行信号重构:根据需要,你可以选择保留特定尺度的小波系数进行信号重构。使用`waverec`函数可以将小波系数重构为原始信号。例如,将第二层小波系数重构为信号的代码如下: ```matlab reconstructed_data = waverec(c(l(1):l(2)), l(2), 'coif4'); ``` 这里的`l(1):l(2)`表示选择第二层的小波系数,`reconstructed_data`是重构后的信号。 5. 可选的去噪处理:根据引用中的建议,你可以根据小波系数的差异性来进行去噪处理。具体的去噪方法可能因具体情况而异,可以使用Matlab中提供的小波去噪函数(如`wdenoise`)来实现。 综上所述,以上是进行电信号离散小波变换的基本步骤。你可以根据实际情况选择合适的小波基函数、分解层数和去噪方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值