💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于CNN-BiLSTM-Attention的风电功率预测研究是一个结合了深度学习技术的复杂课题,旨在提高风电功率预测的准确性和可靠性。以下是对该研究的详细分析:
一、研究背景与意义
风电作为可再生能源的重要组成部分,具有清洁、无污染、可持续等优点。然而,风电功率具有随机性和波动性,给电网运行带来了一定的挑战。因此,准确预测风电功率对于电网调度和能源管理至关重要。CNN-BiLSTM-Attention模型结合了卷积神经网络(CNN)、双向长短记忆网络(BiLSTM)和注意力机制(Attention),能够有效地处理风电功率预测中的复杂问题。
二、模型结构与原理
1. 卷积神经网络(CNN)
- 作用:用于提取输入数据中的空间特征。在风电功率预测中,CNN可以处理风速、风向等输入数据,提取出对预测有用的特征信息。
- 结构:通常由输入层、卷积层、激活层、池化层和全连接层组成。
2. 双向长短记忆网络(BiLSTM)
- 作用:用于捕捉时间序列特征。BiLSTM能够同时处理过去和未来的信息,从而更准确地捕捉风电功率的时序变化。
- 结构:由前向LSTM和后向LSTM组成,两者结合可以获取更全面的时序信息。
3. 注意力机制(Attention)
- 作用:用于加权整合CNN和BiLSTM的输出。注意力机制可以动态地调整不同特征的重要性,从而提高模型的预测精度。
- 实现方式:通过计算权重矩阵,将CNN和BiLSTM的输出进行加权求和,得到最终的预测结果。
三、研究步骤与方法
- 数据准备:收集风电场的风速、风向、温度等历史数据,并进行预处理和归一化操作。
- 模型构建:根据CNN-BiLSTM-Attention模型的结构,使用MATLAB或Python等编程语言构建预测模型。
- 模型训练:使用准备好的数据集对模型进行训练,调整模型参数以优化预测性能。
- 结果评估:使用测试集对训练好的模型进行评估,计算预测误差等性能指标。
- 优化与改进:根据评估结果对模型进行优化和改进,提高预测精度和稳定性。
四、研究成果与应用
基于CNN-BiLSTM-Attention的风电功率预测模型在多个风电场的应用中取得了显著成果。该模型能够准确预测风电功率的变化趋势和波动范围,为电网调度和能源管理提供了有力支持。同时,该模型还可以与其他优化算法相结合,进一步提高预测精度和效率。
五、未来展望
随着深度学习技术的不断发展和完善,基于CNN-BiLSTM-Attention的风电功率预测模型将具有更广阔的应用前景。未来研究可以进一步探索模型的优化算法、特征提取方法和预测精度提升策略等方面的问题,以推动风电功率预测技术的不断进步和发展。
综上所述,基于CNN-BiLSTM-Attention的风电功率预测研究是一个具有重要意义的课题,其研究成果将为风电场的安全稳定运行和电网的调度管理提供有力支持。
📚2 运行结果
部分代码:
layers0 = [ ...
% 输入特征
sequenceInputLayer([numFeatures,1,1],'name','input') %输入层设置
sequenceFoldingLayer('name','fold') %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
% CNN特征提取
convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1') %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
batchNormalizationLayer('name','batchnorm1') % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
reluLayer('name','relu1') % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
% 池化层
maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool') % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
% 展开层
sequenceUnfoldingLayer('name','unfold') %独立的卷积运行结束后,要将序列恢复
%平滑层
flattenLayer('name','flatten')
bilstmLayer(25,'Outputmode','last','name','hidden1')
selfATTENTIONLayer(1,2) %创建一个单头,2个键和查询通道的自注意力层
dropoutLayer(0.1,'name','dropout_1') % Dropout层,以概率为0.2丢弃输入
fullyConnectedLayer(1,'name','fullconnect') % 全连接层设置(影响输出维度)(cell层出来的输出层) %
regressionLayer('Name','output') ];
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 150, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.01, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率调整
'LearnRateDropPeriod',100, ... % 训练100次后开始调整学习率
'LearnRateDropFactor',0.01, ... % 学习率调整因子
'L2Regularization', 0.001, ... % 正则化参数
'ExecutionEnvironment', 'cpu',... % 训练环境
'Verbose', 1, ... % 关闭优化过程
'Plots', 'none'); % 画出曲线
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]马志侠,张林鍹,巴音塔娜,等.基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测[J].太阳能学报, 2024(6).
[2]于海龙,刘国巍.基于CNN-BiLSTM的光伏功率预测方法[J].绿色科技, 2022(024-008).
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取