构建个人知识库时,采用RAG结合LangChain的方法极为有效。RAG,即检索增强生成技术,是一种前沿的自然语言处理手段,它融合了信息检索的精确匹配与语言模型的高效文本生成,为处理自然语言相关任务提供了一种既灵活又准确的策略。
RAG(Retrieval-Augmented Generation)技术,即检索增强生成技术,是一种结合了信息检索系统和大型语言模型(LLM)的自然语言处理技术。它的工作原理主要包括以下几个步骤:
-
准备文本资料:首先收集和整理相关领域的文本资料,确保所选资料的质量和完整性。
-
文本分块:由于LLM的上下文窗口有限,需要将长文本资料分割成较小的块,以便LLM能够有效地处理。
-
嵌入及存储块到向量数据库:使用向量嵌入技术(例如Ollama Embeddings)为每个文本块生成向量表示,并存储这些向量到向量数据库(如Weaviate)中。
-
检索 & 增强:当用户提出查询时,系统利用向量数据库进行检索,找到与查询语义上最相似的文本块。然后,这些检索到的文本块与用户的问题一起被用作LLM的输入。
-
生成回答:LLM根据接收到的上下文信息和问题生成回答。RAG链将检索器、聊天模板以及LLM组合起来,完成整个生成回答的过程。