个人知识库与RAG的技术

构建个人知识库时,采用RAG结合LangChain的方法极为有效。RAG,即检索增强生成技术,是一种前沿的自然语言处理手段,它融合了信息检索的精确匹配与语言模型的高效文本生成,为处理自然语言相关任务提供了一种既灵活又准确的策略。

RAG(Retrieval-Augmented Generation)技术,即检索增强生成技术,是一种结合了信息检索系统和大型语言模型(LLM)的自然语言处理技术。它的工作原理主要包括以下几个步骤:

  1. 准备文本资料:首先收集和整理相关领域的文本资料,确保所选资料的质量和完整性。

  2. 文本分块:由于LLM的上下文窗口有限,需要将长文本资料分割成较小的块,以便LLM能够有效地处理。

  3. 嵌入及存储块到向量数据库:使用向量嵌入技术(例如Ollama Embeddings)为每个文本块生成向量表示,并存储这些向量到向量数据库(如Weaviate)中。

  4. 检索 & 增强:当用户提出查询时,系统利用向量数据库进行检索,找到与查询语义上最相似的文本块。然后,这些检索到的文本块与用户的问题一起被用作LLM的输入。

  5. 生成回答:LLM根据接收到的上下文信息和问题生成回答。RAG链将检索器、聊天模板以及LLM组合起来,完成整个生成回答的过程。

### 使用 DeepSeek 和 RAG 结合爬虫技术创建个人知识库 #### 构建数据采集模块 为了构建一个高效的个人知识库,首先需要建立可靠的数据源。通过使用爬虫技术可以从互联网上获取大量有价值的信息资源。对于特定领域的需求,可以定制化开发专门用于抓取目标网站内容的网络爬虫程序。 ```python import requests from bs4 import BeautifulSoup def fetch_webpage(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') return soup.prettify() ``` 此部分工作可借鉴已有课程中的实践经验[^1],确保所收集到的数据既合法又具有实用性。 #### 数据预处理清洗 获得原始网页资料之后,需对其进行必要的清理操作以去除无关标签、广告等内容,并提取出真正有用的文字描述或其他形式的知识条目。这一过程同样依赖于Python编程技巧及其第三方库的支持。 ```python def clean_data(raw_html): cleaned_text = raw_html.replace('\n', '').strip() # 去除多余空白符 unwanted_tags = ['script', 'style'] # 定义不需要保留下来的HTML标签列表 for tag in unwanted_tags: [s.extract() for s in raw_html('tag')] # 移除指定类型的HTML标签 return cleaned_text ``` #### 整合DeepSeek大模型实践 当准备好足够的高质量语料后,则可以通过调用像DeepSeek这样的大型语言模型来进行进一步加工处理。借助其强大的自然语言理解能力,能够自动识别并分类不同主题下的知识点;同时还能辅助完成诸如摘要生成之类的任务,从而提高整个系统的智能化水平。 #### 应用RAG框架优化查询效率 最后,在实际应用过程中引入基于检索增强生成(Retrieval-Augmented Generation,RAG)机制的设计思路。该方法允许系统在接受用户提问的同时即时访问预先存储好的外部数据库或索引文件,从中挑选最贴切的答案候选集供最终合成参考之用。如此一来不仅提升了回复质量还有效减少了因内部参数调整不当而引发的各种错误情况的发生几率。 ```python class KnowledgeBaseSearcher: def __init__(self, db_path): self.db_connection = sqlite3.connect(db_path) def search(self, query_string): cursor = self.db_connection.cursor() sql_query = "SELECT * FROM knowledge_entries WHERE content LIKE ?" results = cursor.execute(sql_query, ('%' + query_string + '%',)).fetchall() return results ``` 上述流程展示了如何综合利用多种先进技术手段搭建起一套完整的个性化学习平台解决方案[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值