💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
电动汽车作为交通工具和移动负荷的载体,其出行分布和路径规划会受到交通信息的影响,而充
电需求和充电策略会影响电网经济性与安全运行,因此建立图1所示的路网-配电网-车网交互模型分析EV充电负荷的时空分布。
在建立各个模型后,下图给出了充电负荷时空分布预测具体流程。
由图3可知,充电负荷时空分布预测流程如下。
1) 首先按一定比例在各交通节点引入不同类型电动汽车数量;
2) 通过蒙特卡洛模拟为各EV随机抽样生成相应的行驶特性参数和充电特性参数;
3) EV用户按照行程时间最小为目标,采用实时Dijkstra算法规划的路径进行行驶,并实时更新特性
参数;
4) 通过用电区域功能类型划分,对该区域充电的EV功率进行累加计算得到区域配网节点负荷,完
成整体充电负荷时空预测。
车-电-路网时空分布负荷预测研究
一、车-电-路网的定义与组成
车-电-路网是通过新一代信息与通信技术(如5G、C-V2X等)将车辆、电力系统、道路基础设施及云控平台深度融合形成的协同系统,旨在实现交通与能源系统的安全、高效与智能化运行。其核心组成包括:
- 车辆及其他交通参与者:通过车载传感器(雷达、摄像头等)和通信模块实时感知环境,并向云控平台提供动态数据(如位置、速度、方向)。
- 路侧基础设施:包括智能信号灯、RSU(路侧单元)、边缘计算设备等,负责采集交通流量、道路状态等数据,并通过V2I(车-路通信)实现与车辆的交互。
- 通信网络:支持低时延、高可靠的数据传输,采用蜂窝网络(5G)、DSRC等技术,保障车-路-云之间的实时通信。
- 云控平台:整合多源数据(交通、电网、气象等),通过协同感知与决策生成控制策略(如路径优化、充电调度),并反馈至车辆和基础设施。
二、时空分布负荷预测的常用方法
车-电-路网负荷预测需综合考虑交通流、充电需求、电网状态等多维时空数据,常用方法包括:
- 统计方法:如ARIMA、指数平滑模型,适用于线性时序数据,但难以捕捉复杂非线性关系。
- 机器学习方法:
- 随机森林/XGBoost:处理高维特征,适用于短时预测。
- 支持向量机(SVM) :适用于小样本数据,但对大规模数据计算效率低。
- 深度学习方法:
- LSTM:捕捉时间序列的长期依赖关系,常用于充电负荷时序预测。
- 时空混合模型(如LSTM-CNN) :联合提取时间动态与空间特征(如交通路网拓扑),提升预测精度。
- 组合预测法:融合多种模型(如统计+深度学习),通过权重优化减少单一模型的局限性。
三、车-电-路网的耦合关系
车辆、电力与路网通过以下机制深度耦合:
- 交通对电网的影响:
- 电动汽车(EV)的充电需求受交通流量、路径选择影响,导致电网负荷的时空波动。
- 充电站布局与电价策略(如分时电价)会改变EV充电行为,进而影响配电网潮流。
- 电网对交通的反馈:
- 电网节点电压、容量限制可能通过充电价格调整EV充电计划,间接优化交通流量。
- 路网与电网的协同优化:
- 采用分层图论模型描述路网与电网的拓扑耦合,通过动态路径规划平衡充电负荷与交通拥堵。
四、时空数据采集与处理技术
- 数据来源:
- 交通数据:GPS轨迹、路侧摄像头、地磁感应器等。
- 电网数据:充电桩功率、节点电压、负荷曲线。
- 环境数据:气象信息、道路状况(如拥堵指数)。
- 处理技术:
- 时空数据融合:利用GIS整合多源数据,构建时空动态数据库。
- 数据压缩与索引:采用Douglas-Peucker算法压缩轨迹数据,提升存储效率。
- 边缘计算:在路侧设备进行实时数据处理,降低云控平台负载。
五、现有预测模型案例
- 基于动态交通信息的模型:
- 通过Dijkstra算法规划EV路径,结合蒙特卡洛模拟预测充电负荷时空分布(Matlab实现案例)。
- 多源信息交互模型:
- 考虑用户后悔心理与实时路况,优化充电站选择策略,减少负荷峰谷差。
- 车-路-网协同模型:
- 将交通路网映射至配电网节点,分析充电负荷对电网潮流的影响(如33节点系统仿真)。
六、影响时空负荷分布的关键因素
- 用户行为:
- 充电时段偏好、里程焦虑、充电方式选择(快充/慢充)直接影响负荷曲线形态。
- 交通流量:
- 高峰期拥堵导致EV能耗增加,充电需求向特定区域集中。
- 环境因素:
- 温度影响电池效率(冬季能耗增加20%-30%)。
- 极端天气(如暴雨)改变出行模式,导致负荷时空分布突变。
- 电价政策:
- 分时电价引导用户低谷充电,平抑电网峰谷差。
七、挑战与未来方向
- 数据异构性:需解决交通、电网、气象数据的格式与精度差异问题。
- 模型泛化能力:现有模型多针对特定场景,需开发适应多城市、多气候的通用框架。
- 车网互动(V2G) :研究EV作为分布式储能参与电网调频的负荷预测方法。
- 实时性要求:边缘计算与5G技术的结合将提升预测模型的响应速度。
八、结论
车-电-路网时空负荷预测是实现智慧交通与能源互联的核心技术,需综合多学科方法突破数据融合、模型优化与协同控制等瓶颈。未来研究方向包括动态电价策略优化、极端场景适应性增强,以及车-路-云一体化平台的标准化建设。
📚2 运行结果
运行视频:
可视化:
%% Fig
figure(1)
%bar(TP_carnumber);
%bar(TP_carnumber(:,1),'stack'); %私家车
%bar(TP_carnumber(:,2),'stack'); %出租车
%bar(TP_carnumber(:,3),'stack'); %公交车
bar(TP_carnumber,'stack'); %私家车+出租车+公交车
xlabel('交通节点');
ylabel('EV数量/辆');
legend('私家车','出租车','公共车');
figure(2)
%plot(TP_carnumber(:,1),'-p');%私家车
%plot(TP_carnumber(:,2),'-p');%出租车
%plot(TP_carnumber(:,3),'-p');%公交车
plot(TP_carnumber,'-p');%私家车+出租车+公交车
xlabel('交通节点');
ylabel('EV数量/辆');
legend('私家车','出租车','公共车');
figure(3)
bar(Pcharge,'stack');
xlabel('交通节点');
ylabel('EV数量/辆');
legend('私家车','出租车','公共车');
figure(4)
bar3(Pntcharge);
xlabel('配网节点编号');
ylabel('时间/h');
zlabel('充电需求/kW');
figure(5)
plot(Uall,'-p');
xlabel('配网节点编号');
ylabel('电压/pu');
figure(6)
mesh(Uall);
ylabel('配网节点编号');
xlabel('时间/h');
zlabel('电压/pu');
figure(7)
% plot(G,'EdgeLabel',G.Edges.Weight);
% title('标定权重的无向图')
plot(G);
title('无向图')
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]李晓辉,李磊,刘伟东,赵新,谢秦.基于动态交通信息的电动汽车充电负荷时空分布预测[J].电力系统保护与控制,2020,48(01):117-125.DOI:10.19783/j.cnki.pspc.181616.
[2]李磊,赵新,李晓辉,刘伟东,刘小琛,冯炜.基于动态交通信息的电动汽车充电需求预测模型及其对配网的影响分析[J].电网与清洁能源,2020,36(03):107-118.