💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于TCN-GRU-Attention的自行车租赁数量预测研究是一个结合了多种深度学习技术的复杂任务,旨在提高自行车租赁数量预测的准确性和鲁棒性。以下是对该研究的详细分析:
一、研究背景与意义
随着共享单车系统的普及和城市交通需求的增长,准确预测自行车租赁数量变得尤为重要。这不仅有助于共享单车公司优化资源配置、提高运营效率,还能为城市规划者提供决策支持,促进城市交通的可持续发展。TCN-GRU-Attention模型作为一种结合了时间卷积网络(TCN)、门控循环单元(GRU)和注意力机制(Attention)的先进模型,能够有效捕捉时间序列数据中的长期依赖、短期波动以及重要特征,因此被广泛应用于自行车租赁数量预测领域。
二、模型原理
- 时间卷积网络(TCN):
- TCN是一种专门用于处理时间序列数据的卷积神经网络。
- 它通过膨胀卷积(Dilated Convolution)来扩大感受野,从而能够捕捉到时间序列中的长期依赖关系。
- TCN还具备并行处理能力,能够加速训练过程。
- 门控循环单元(GRU):
- GRU是循环神经网络(RNN)的一种变体,旨在解决传统RNN在长序列上训练时容易出现的梯度消失或梯度爆炸问题。
- GRU通过引入更新门和重置门来控制信息的流动,从而有效捕捉时间序列中的短期依赖关系。
- 注意力机制(Attention):
- 注意力机制模仿了人类在处理信息时的注意力分配方式,能够增强模型对重要信息的关注度。
- 在TCN-GRU-Attention模型中,注意力机制被用于对TCN和GRU提取的特征进行加权融合,提高模型对不同特征的识别能力。
三、研究过程
- 数据收集与预处理:
- 收集共享单车系统的历史租赁数据,包括时间、天气、节假日、地理位置等多维度信息。
- 对数据进行清洗、去噪、归一化等预处理操作,确保数据的质量和可用性。
- 模型构建:
- 搭建TCN-GRU-Attention模型框架,分别利用TCN和GRU对时间序列数据进行特征提取和建模。
- 引入注意力机制对模型输出进行加权融合,提高预测的准确性。
- 模型训练与优化:
- 使用训练集数据对模型进行训练,通过调整超参数、优化算法等手段提高模型的性能。
- 采用交叉验证等方法评估模型的泛化能力,确保模型在不同数据集上的稳定性。
- 结果分析与评估:
- 使用测试集数据对模型进行验证,评估模型在预测自行车租赁数量方面的准确性和鲁棒性。
- 与其他常用模型(如LSTM、SVR等)进行对比分析,展示TCN-GRU-Attention模型的优势。
四、研究成果与展望
基于TCN-GRU-Attention的自行车租赁数量预测研究能够显著提高预测的准确性和鲁棒性,为共享单车公司和城市规划者提供有力的决策支持。未来研究可以进一步探索以下方向:
- 模型优化:继续优化TCN-GRU-Attention模型的结构和参数设置,提高模型的预测性能。
- 多源数据融合:融合更多维度的数据(如社交媒体数据、交通流量数据等),进一步提升预测的准确性和时效性。
- 实时预测:开发实时预测系统,实现对自行车租赁数量的即时预测和动态调整。
- 跨城市应用:将研究成果应用于不同城市的共享单车系统,验证模型的通用性和适应性。
综上所述,基于TCN-GRU-Attention的自行车租赁数量预测研究具有重要的理论意义和实际应用价值,能够为城市交通的可持续发展贡献力量。
📚2 运行结果
部分代码:
function [mae,rmse,mape,error]=calc_error(x1,x2)
error=x2-x1; %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])
mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])
mape=mean(abs(error)/x1);
disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]李婷婷.城市公共自行车租赁点选址规划研究[D].北京交通大学,2010.DOI:10.7666/d.y1961114.
[2]陆朕.公共自行车租赁点车辆数的预测方法研究[D].南京师范大学,2015.DOI:10.7666/d.Y2857359.
[3]韩军红,魏越,侯礼兴.公共自行车租赁点规模优化[J].山西建筑, 2023, 49(22):57-61.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取