17.神经网络基础

学习视频:

QA_哔哩哔哩_bilibili

目录

一、层和块

1.回顾多层感知机

2.自定义块:

3.编写MySequential类,提供与默认Sequential类似的功能

​编辑4.自定义块相当灵活,实现一个FixedHiddenMLP类

5.混合嵌套:

二、参数管理:

1.定义一个单隐藏层的多层感知机:

2.通过检索访问模型的任意层:

3.一次性访问所以参数:

4.从嵌套块收集参数

​编辑5.初始化参数:

(1)内置初始化:

(2)自定义初始化

(3)甚至可以直接设置参数:

6.参数绑定:

三、自定义层:

1.不带参数的层

2.带参数的层:

四、读写文件

1.加载和保存张量:

2.存储张量列表,并读取

3.写入或读取从字符串映射到张量的字典:

4.加载和保存模型参数:

(1)定义一个MLP:

(2)存储:

(3)加载:


一、层和块

1.回顾多层感知机

下面代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层,然后是一个具有10个隐藏单元且不带激活函数的全连接输出层

import torch
from torch import nn
from torch.nn import functional as F

net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))

X = torch.rand(2, 20)
net(X)

通过实例化nn.Sequential来构建我们的模型,nn.Sequential定义了一种特殊的Module

2.自定义块:

通过继承nn.Moudule编写一个块,结构化MLP(多层感知机

class MLP(nn.Module):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用MLP的父类Module的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)  # 隐藏层
        self.out = nn.Linear(256, 10)  # 输出层

    # 定义模型的前向传播,即如何根据输入X返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))
net = MLP()
net(X)

自定义层的优点在于他的灵活性、多功能性,可按自己的需求随心所欲的创建块。

3.编写MySequential类,提供与默认Sequential类似的功能

把每层存放进一个_modules容器中

class MySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        for idx, module in enumerate(args):
            # 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
            # 变量_modules中。_module的类型是OrderedDict
            self._modules[str(idx)] = module

    def forward(self, X):
        # OrderedDict保证了按照成员添加的顺序遍历它们
        for block in self._modules.values():
            X = block(X)
        return X
net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)

4.自定义块相当灵活,实现一个FixedHiddenMLP类

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # 不计算梯度的随机权重参数。因此其在训练期间保持不变
        self.rand_weight = torch.rand((20, 20), requires_grad=False)
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        # 使用创建的常量参数以及relu和mm函数
        X = F.relu(torch.mm(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数
        X = self.linear(X)
        # 控制流
        while X.abs().sum() > 1:
            X /= 2
        return X.sum()
net = FixedHiddenMLP()
net(X)

5.混合嵌套:

class NestMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
                                 nn.Linear(64, 32), nn.ReLU())
        self.linear = nn.Linear(32, 16)

    def forward(self, X):
        return self.linear(self.net(X))

chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)

二、参数管理:

1.定义一个单隐藏层的多层感知机:

import torch
from torch import nn

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)

如何访问属性参数,如每层权重,偏置,梯度等

2.通过检索访问模型的任意层:

print(net[2].state_dict())

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)

net[2].weight.grad == None

偏置参数是复合对象,包含值、梯度和额外信息

3.一次性访问所以参数:

print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])

# 访问特定索引
net.state_dict()['2.bias'].data

4.从嵌套块收集参数

生成一个小块,然后多个块组成一个大块

def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                         nn.Linear(8, 4), nn.ReLU())

def block2():
    net = nn.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add_module(f'block {i}', block1())
    return net

rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)

print(rgnet)

因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。 下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。

rgnet[0][1][0].bias.data

5.初始化参数:

(1)内置初始化:

def init_normal(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, mean=0, std=0.01) #正态分布
        nn.init.zeros_(m.bias)
net.apply(init_normal) # apply:将每个module带参数遍历
net[0].weight.data[0], net[0].bias.data[0]

给所有参数初始化为常数,可以这样做,不过没什么用

def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1)
        nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]

对某些块应用不同的初始化方法:例如,下面我们使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。

def init_xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)
def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)

(2)自定义初始化

def my_init(m):
    if type(m) == nn.Linear:
        print("Init", *[(name, param.shape)
                        for name, param in m.named_parameters()][0])
        nn.init.uniform_(m.weight, -10, 10)
        m.weight.data *= m.weight.data.abs() >= 5 # 小于5为0

net.apply(my_init)
net[0].weight[:2]

(3)甚至可以直接设置参数:

net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]

6.参数绑定:

有时我们希望在多个层间共享参数: 我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                    shared, nn.ReLU(),
                    shared, nn.ReLU(),
                    nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])

三、自定义层:

1.不带参数的层

看起来就是一个简单的python函数,功能是返回每个值减均值

import torch
import torch.nn.functional as F
from torch import nn


class CenteredLayer(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, X):
        return X - X.mean()
layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))

将该层作为组件合并到更复杂的模型中:

net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
Y = net(torch.rand(4, 8))
Y.mean()

2.带参数的层:

class MyLinear(nn.Module):
    def __init__(self, in_units, units):
        super().__init__()
        self.weight = nn.Parameter(torch.randn(in_units, units))
        self.bias = nn.Parameter(torch.randn(units,)) # randn中的n,就是normal,正态分布
    def forward(self, X):
        linear = torch.matmul(X, self.weight.data) + self.bias.data
        # matmul矩阵乘法
        return F.relu(linear)
linear = MyLinear(5, 3)
linear.weight

使用自定义层直接执行前向传播计算

linear(torch.rand(2, 5))

我们还可以(使用自定义层构建模型),就像使用内置的全连接层一样使用自定义层。

net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64))

四、读写文件

1.加载和保存张量:

import torch
from torch import nn
from torch.nn import functional as F

x = torch.arange(4)
torch.save(x, 'x-file')

读取:
 

x2 = torch.load('x-file')
x2

2.存储张量列表,并读取

y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
(x2, y2)

3.写入或读取从字符串映射到张量的字典:

mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2

4.加载和保存模型参数:

(1)定义一个MLP:

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))

net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

(2)存储:

# net.state_dict()获取全部参数
torch.save(net.state_dict(), 'mlp.params')

(3)加载:

为了恢复模型,我们[实例化了原始多层感知机模型的一个备份。] 这里我们不需要随机初始化模型参数,而是(直接读取文件中存储的参数。)

clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()

由于两个实例具有相同的模型参数,在输入相同的X时, 两个实例的计算结果应该相同。 让我们来验证一下。

Y_clone = clone(X)
Y_clone == Y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值