请点击↑关注、收藏,本博客免费为你获取精彩知识分享!有惊喜哟!!
数量关系 11.高频考点常用解题方法-鸡兔同笼、牛吃草
鸡兔同笼
鸡兔同笼,是中国古代著名典型趣题之一,大约在1500年前,《孙子算经》中就记载了这个有趣的问题(此孙子非彼孙子);
书中是这样叙述的:
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
这四句话的意思是:
有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?
那鸡兔同笼问题的本质是什么?
其实是一种二元方程,在小学阶段学习中,用来让小学生初步理解未知数和方程等的概念;
那我们在数量关系中解题中,要列方程么?
不能,不必,我们早已经过了理解未知数和方程的阶段(也就是老大不小了),我们势必要用别的方法来达到快速求解的目标。
那如何求解呢?
题干已知“头”和“腿”,其中鸡和兔每只1个头,但鸡有2只脚,而兔有4只脚;
如果35个头都是鸡头,那应该只有70只脚;
但刚才数是94,怎么少了94-70=24只脚?
仔细一看发现第二次数的时候,兔子们好奇于来者何人,全都前脚抬起站了起来!
这下明白了,少了的24只脚都在空中呢!
一只兔子4只脚,2只后脚2只前脚,前脚都在空中?共24只?
说明一共有12只兔子!
鸡呢?35-12=23只鸡。
有同学说,那如果35个头都是兔头嘞?
我们来看,如果35个头都是兔头,那么应该有140只脚;
但刚才数只有94只呐,多出来的140-94=46只脚哪里来的?
再仔细一看?所以的鸡都嘴巴点地,尾巴戳地....(有点奇怪就是了😂🐓)
抬头挺胸!!
好了,多出来的46只脚消失了,46/2=23,一共有23只鸡!
整理一下,即为:
总腿数-假设都是鸡(兔)时的总腿数/单只腿数差=兔(鸡)的数量;
即假设是鸡则求兔,假设是兔则求鸡。
在考试中,鸡和兔常被替换掉,演化出类似的题型,如:
某餐厅设有可坐12人和可坐10人两种规格的餐桌共18张,最多可容纳208人同时就餐,问该餐厅有几张10人桌?
这就变成了10只腿的鸡,和12只腿的兔子!
假设18张都是鸡,则有18x10=只腿,但现在居然有208只,多了208-180=28只,
28/单只腿差=28/2=14,可知有14只兔子,那么鸡为18-14=4;
故10人桌数量为4。
类似的题型还会出现:
考试得分类、报酬类、比赛积分类;
题型特征为:已知了“头数”、“单腿数”、“总腿数”;
那么求解的时候,只要找到其中的鸡和兔,则很容易求得答案。
看看例题,感受感受?
例1:某赛事实行积分赛制,获胜积5分,打平积2分,失败扣1分。已知小辉在20场积分赛后积61分且有3场比赛打平,那么小辉的胜率为 ( ) :
A. 48% B. 55% C. 60% D. 75%
解析:
根据题意,实行积分赛制,找头数、总腿数和单腿数;
20场积分赛后积61分且有3场比赛打平,其中打平的3场得积分为3x2=6分;
故有:头数为20-3=17,鸡腿为5,兔腿为-1,总腿为61-6=55;
假设都为鸡,则应有腿为17x5=85,多出85-55=30,
单腿差为5-(-1)=6,即兔为:30/6=5;
即鸡--胜为17-5=12场;
胜率=12/20=60%,答案选C。
例2:小明负责将某农场的鸡蛋运送到小卖部。按照规定,每送达1 枚完整无损的 鸡蛋,可得运费 0.1 元;若有鸡蛋破损,不仅得不到该枚鸡蛋的运费,每破损一枚鸡蛋还要赔偿 0.4 元。 小明 10 月份共运送鸡蛋 25000 枚,获得运费 2480 元。
那么,在运送过程中,鸡蛋破损了:
A.20 枚 B.30 枚 C.40 枚 D.50 枚
解析:
根据题意,出现头数、单腿数和总腿数;
假设25000枚鸡蛋全完整无损,则可获得运费:
25000x0.1=2500,
但实际少了2500-2480=20元;
“单腿差”=0.1-(-0.4)=0.5,
即有:20/0.5=40为破损鸡蛋数,答案选C。
牛吃草
牛妈带着牛娃找到了一片草地,牛妈看了看娃,看了看草地,脑海中迅速估算这片新发现的草地能吃几天,如果牛爸也来了能吃几天?
这就是牛吃草问题,我们来看最经典的一道例题:
例:一片草地(草以均匀的速度生长),240头牛可以吃6天,200头牛可以吃10天,则这片草原可供 190 头牛吃的天数是( )
如何求解呢?
很简单,我们先来将题干中的几个量找出来:
“一片草地”--一定是有草的,假设初始草量为y;
“草以均匀的速度生长”--草有生长速度,以天为单位,假设速度为x/天;
给定2个等量关系,即可以列出两个方程,如下:

假设190头牛吃a天,即有等量关系:
600+140a=190a,
移向即有:
600=(190-140)a=50a,则a=12。
这里提醒大家注意:
600+140a=190a,移向后有:600=(190-140)a ③
式子③不是单纯的移向后的结果,从题目的角度出发,它的意义可以解读为:
600为原有草量,140为草的生长速度,190为牛数;
则假设一头牛一天吃一份草,那么190头牛每天吃190份草,而草地每天会长出140份草;
这样一来,草地每天减少的草量为190-140=50份,也就是消耗效率为50/天;
因总量=效率x时间,时间=总量/效率;
即有600份草,够190头牛吃的天数为:600/50=12天。
而题干的条件也可以列式为如下形式:

简单计算求得x、y的值,再用总量除以草地每天实际减少的量,即为够吃的天数。
以上就是牛吃草题型的解法,那考试中牛就是牛,草就是草么?
非也非也~
那我们如何判定牛吃草题型呢?
从例题出发,我们来总结一下题型特征:
在原有存量的基础上,匀速增加,同时持续消耗,给定不同的情况下消耗的状态;
套用此模型,衍生出如下题型:
1️⃣检票口检票(窗口售票、收银台结账):
某车站在检票前若干分钟就开始排队,每分钟来的乘客人数一样多,从开始检票到等候检票的队伍消失,若同时开5个检票口需要30分钟,如果同时开6个检票口需要20分钟;
“检票前若干分钟就开始排队”----排队人数有存量;
“每分钟来的乘客人数一样多”----匀速增加;
“开始检票”---持续消耗;
“同时开5个...同时开6个...”----不同情况下消耗的状态;
则假设原有存量为y,匀速增加的速度为x,则给定的2种情况下消耗效率分别为5-x和6-x,列出对应方程,求得x和y;
2️⃣水池抽水(漏船排水、泄洪):
有一个水池,池底有泉水不断涌出.用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完;
“有一个水池”----水有存量;
“池底有泉水不断涌出”----匀速增加;
“用5台...用8台...”----不同情况下消耗的状态;
则假设原有存量为y,匀速增加的速度为x,则给定的2种情况下消耗效率分别为5-x和8-x,列出对应方程,求得x和y;
3️⃣挖沙(伐木):
某河道由于淤泥堆积影响到船只航行安全,现由工程队使用挖沙机进行清淤工作,清淤时上游河水又会带来新的泥沙。若使用1台挖沙机300天可完成清淤工作,使用2台挖沙机100天可完成清淤工作;
“淤泥堆积”----泥沙有存量;
“清淤时上游河水又会带来新的泥沙”----匀速增加;
“使用1台...使用2台...”----不同情况下消耗的状态;
则假设原有存量为y,匀速增加的速度为x,则给定的2种情况下消耗效率分别为1-x和2-x,列出对应方程,求得x和y;
.....等等;均是有来有去、有进有出、有增有减、有产出有消耗情形,在理解牛吃草的基础上,这些题型都可以迎刃而解。
来看看例题,感受下~
例1:火车站售票窗口一开始有若干乘客排队购票,且之后每分钟增加排队购票的乘客人数相同。从开始办理购票手续到没有乘客排队,若开放3 个窗口,需耗时90分钟,若开放5个窗口, 则需耗时45分钟。
问如果开放6 个窗口,需耗时多少分钟:
A.36 B.38 C.40 D.42
解析:
根据题意,为窗口售票的牛吃草类题型,可知需要求出原有量y和增速x;
即有:
y =90(3-x)=45(5-x)
解得:
x=1,y=180;
故如果开放6个窗口,需耗时为:180/(6-1)=36,答案选A。
例2:某轮船发生漏水事故,漏洞处不断地匀速进水,船员发现险情后立即开启抽水机向外抽水。已知每台抽水机每分钟抽水20 立方米,若同时使用 2台抽水机 15 分钟能把水抽完,若同时使用 3 台抽水机 9 分钟能把水抽完。当抽水机开始向外抽水时,该轮船已进水( )立方米。
A.360 B.450 C.540 D.600
解析:
根据题意,为漏船排水的牛吃草类题型,可知需要求出原有量y和增速x;
即有:
y =15(40-x)= 9(60-x)
解得:
x=10,y=450,答案选B。
以上就是非高频提高篇中的鸡兔同笼和牛吃草问题~
数量关系 12.高频考点常用解题方法-日期星期问题
日期星期问题
日期星期问题的考试形式通常是:
先告诉一些已知条件,然后根据条件对星期或者日期进行求解。
这类问题的难度不大,在了解基本常识的基础上,掌握一定的技巧就能快速解题拿分;
●首先我们来看基础知识:
1️⃣平年与闰年:
一年有365个日出🌞,那这一年一定是平年;
如果你收到了366个祝福,那这一年一定是闰年;
平闰之区别在于2月;
平年的2月有28天,闰年的2月有29天。
如何判定某一个年份是平年还是闰年呢?
如果年份不能被4整除,那么这个年份一定是平年;
那也就是说如果年份能被4整除,就可以判定其为闰年咯?
非也非也!
闰年分为普通闰年和世纪闰年两种:
所谓世纪,一个世纪是100年,那也就不难理解,世纪闰年一定是以00结尾的年份,比如1900、2000、2100年等;
除世纪年之外,能被4整除的一定是闰年;
但世纪年中,除了满足能被4整除外,还需要满足能被400整除,如1900可以被4整除,但不能被400整除,故其不是闰年;而2000可以被400整除,则为闰年。
所以判定闰年,需要看四,还要看百~
2️⃣大月与小月:
还记得一三五七八十腊么,或者还记得小时候把手握成拳头跑山沟么?
在干啥?
数大小月呐~
大月:
一月、三月、五月、七月、八月、十月、十二月,每个月都是31天;
小月:
四月、六月、九月、十一月,每个月都是30天;
二月不大不小,平年28天,闰年29天。
●常用技巧:
(1)每连续7天必有1个星期一到星期日;
这7天可以是1号到7号,也可以是2号到8号,还可以是3号到9号...只要是连续7天,那么其中一定会有星期一到星期日各1天;
(2)每连续28天必有4个星期一到星期日;
同样,这28天可以是1月2号到1月29号,也可以是2月1号到2月28号,还可以是3月3号到3月30号....只要是连续的28天,其中一定会有星期一到星期日各4天;
(3)365÷7=52…1;
可知:每过完1个平年,星期增加1天;
366÷7=52…2;
可知:每过完1个闰年,星期增加2天。
年龄问题
年龄问题在数量关系的考查中属于比较简单的问题;
可不是简单么?
不管是谁,不就一年长一岁么?
还能有啥特殊情况?除非那人数错日历看错钟表了...说到钟表问题,就会稍微有点难了,我们后面专开一篇论钟表,这会子先看简单的年龄问题;
正如前面提到的,不论是谁一年长一岁!
那么如果两个人某一个年的年龄差为5岁,不论过多少年(有生之年),这两个人的年龄差始终为5岁,没问题吧?
那如果两个人中,其中一个人的年龄为另一个人的2倍,这个2倍能始终保持下去么?必须不能,你看:

整理总结一下,即有:
年龄问题中:每个每年长一岁,两个人的年龄差保持不变,两个人年龄之间的倍数会变化且呈变小趋势。
明确了年龄问题的基础知识,解题就不在话下了~
年龄问题的解法推荐方程法和代入法;
年龄问题天然存在等量关系,即年龄差不变,且一般而言,题干中一定会存在其他等量关系,所以方程法一定是最好用的;
在方程法的基础上,可以辅助代入法,将选项代入验证,也辅助快速判断正确与否。
基本常识和技巧了解了,一起来看例题吧。
例1:根据国务院办公厅部分节假日安排的通知,某年8月份有 22个工作日,那么当年的8月1日可能是:
A.周一或周三 B.周三或周日 C.周一或周四 D.周四或周日
解析:
题干条件给定8月份工作日天数;
我们知道8月份为大月,共有31天,其中有:
31÷7=4…3,共4个完整周期,共20个工作日;
因每连续7天一定会有各有1天周一到周日,设问问8月1日,那我们将8月1日空出,除去8月的1、2、3日,其余28天为4个完整周期;
根据已知条件,即有:
8月1、2、3日中有2天为工作日,如何安排呢?
只能是周日、周一、周二或周四、周五、周六;
即8月1日为周日或周四,答案选D。
例2:某年的3月份共有5个星期三,并且第一天不是星期一,最后一天不是星期五,则该年的 3月15日是:
A.星期二 B.星期三 C.星期四 D.星期五
解析:
题干条件为某年的3月份,3月为大月,共31天;
31÷7=4…3,即各有4个周一到周日;
根据题干条件,有5个星期三,即余下的3天中有一天为星期三,有哪几种可能呢?
(三、四、五)、(二、三、四)、(一、二、三);
题干又有:
第一天不是星期一,最后一天不是星期五,即可知该余下3天为星期二、星期三和星期四;
15÷7=2…1,则第15天与第1天相同,即3月15日为星期二,答案选A。
例3:2014 年父亲、母亲的年龄之和是年龄之差的 23 倍,年龄之差是儿子年龄的 1/5,5 年后母亲和儿子的年龄都是平方数。问2014 年父亲的年龄是多少?(年龄都按整数计算)
A.36 岁 B.40 岁 C.44 岁 D.48 岁
解析:
根据题意,可以假设父亲、母亲的年龄差为x,则有:儿子的年龄为5x;
且5x+5=5(x+1)为平方数,易知x取4;
即2014年父亲、母亲的年龄差为4,则父亲、母亲年龄和为23x4=92;
那哪个是父亲?哪个是母亲呢?
题干还有个条件没有用,5年后母亲的年龄是平方数;
可知,母亲为44岁,父亲为48岁,答案选D。
例4:小强的爸爸比小强的妈妈大3岁,全家三口的年龄总和74岁,9年前这家人的年龄总和49岁,那么小强的妈妈今年多少岁?( )
A.32 B.33 C.34 D.35
解析:
根据题意,假设强妈的年龄为x,强爸的年龄为x+3;
又“9年前”这家人年龄总和为49,但74-49=25,并非3x9=27;
问题出在哪里?
一定在强身上,9年前还没有强,又年龄差保持不变,即:
x+x+3-18=49
求得,x=32,答案选A。
例5:张先生比李先生大8岁,张先生的年龄是小王年龄的 3 倍,9年前李先生的年龄是小王年龄的4倍。则几年后张先生的年龄是小王年龄的 2 倍?( )
A.10 B.13 C.16 D.19
解析:
根据题意,可以假设小王的年龄为x,则有:
张先生的年龄为3x,李先生的年龄为3x-8;
3x-8-9=4(x-9);
易求得:x=19;
问:张先生年龄是小王年龄的2倍是几年之后?
即:3x19+n=2(19+n),n=19,答案选D。
以上就是非高频提高篇中的日期星期和年龄问题~
数量关系 13.高频考点常用解题方法-周期循环问题
周期循环是指:
事物的某一特征按照一定的规律反复出现,即遵循一定的周期循环出现。
就比如我们上一篇说的日期星期,每周有7天,周一到周日,就是以7天为一个周期循环出现;每天有24小时,就是以24小时为一个周期循环出现。
但周期循环并非只会出现时间的循环,也可能会是事物的“其他特征”,但解题的方法都是一样的;
那解题的关键在哪里呢?
●(1)既然是循环,先确定其循环方式,找到循环周期。
例如:
星期是7天为1个周期;
会场的椅子按红蓝绿红蓝绿红蓝绿....的顺序排下去,则以3为1个周期;
在2个红球中放4个黑球,则为以5为1个周期....
1个事物的循环周期很容易确定,那如果问2个事物的循环周期呢?
例如:小王每4天值班一次,小李每5天值班一次,则两人每多少天共同值班一次?
此时的循环周期即为每个事物周期的最小公倍数,即有:
小王和小李每20天共同值班一次。
那问3个事物循环周期呢?那就求3个事物周期的最小公倍数就好了~
例如:小王每4天值班一次,小李每5天值班一次,小张每6天值班一次,则三人每多少天共同值班一次?
此时的循环周期即为3个事物周期的最小公倍数,即有:
4、5、6的最小公倍数为60,则三人每60天共同值班一次。
到这里我们暂停一下,就“最小公倍数”我们来多说几句:
最小公倍数怎么求?
如果求两个数的最小公倍数:
该两数互质,则直接相乘即可;
那如果并不互质呢?
假设该两数为30和36,则求其最小公倍数,
我们常这样来写:

将两个数约至互质,即可求得最小公倍数为:
3x2x5x6=180
同样,3个数的最小公倍数亦为如上,假设3个数分别为16、40、48,则:

则最小公倍数为:4x2x2x5x3=240。
好,最小公倍数没问题了,我们继续前面的周期;
这里要注意:
在循环周期的表达中,常出现“过”、“隔”、“第”等关键词,这里是常见的掉坑处,务必要分清楚不同的表达,比如今天是复习备考的第1天,则从今天开始,每3天做一次真题,则以3为周期来循环;每隔3天做一次真题,则以4为周期来循环。
●(2)在确定周期后,需要注意要正确理解余数;
某一事物特征以T为周期循环出现,则第S项满足:
S÷T=n余a;
此时如果a为0,即可以整除,那么第S项为1个完整周期中的最后一项;
如果a不为0,则第S项等同于第a项;
其中n为完整的周期数;
举个简单的例子:
假设某一事物特征,以5为周期循环出现,则第81项满足:
81÷5=16…1,
则第81项与第一项相同;
又假设某一事物特征,以7为周期循环出现,则第104项满足:
104÷7=14…6,
则第104项与第6项相同。
基本常识和技巧了解了,如何应用呢?一起来看例题~
例1:文化广场上从左到右一共有5面旗子,分别代表中国、德国、美国、英国和韩国。如果将5面旗子从左到右分别记作A、B、C、D、E,那么从中国的旗子开始,按照ABCDEDCBABCDEDCBA……的顺序数,数到第313个字母时,是代表( )的旗子。
A.英国 B.德国 C.中国 D.韩国
解析:
根据题意,旗子以ABCDEDCB,即8为周期循环出现;
313÷8=39…1,
即第313个字母与第1个字母相同,第1个字母为A,代表中国的旗子,答案选C。
例2:小明、小红、小桃三人定期到某棋馆学围棋,小明每隔3天去一次,小红每隔4天去一次,小桃每隔5天去一次。若 2016年2月10日三人恰好在棋馆相遇,则下次三人在棋馆相遇的日期是( )。
A.2016年4月8日 B.2016年4月11日 C.2016年4月9日 D.2016年4月10日
解析:
题干出现3个人的周期循环,为3个周期找最小公倍数,即:
小明每隔3天去一次,小明的周期为4;
小红每隔4天去一次,小红的周期为5;
小桃每隔5天去一次,小桃的周期为6;
则3个周期4、5、6的最小公倍数为60;
即2016年2月10日三人相遇后,再过60天再次相遇;
因2016可以被4整除,当年为闰年,故2月有29天,
60=19+41=19+31+10,故再次相遇应为2016年4月10日,答案选D。
例3:甲、乙、丙三人均每隔一定时间去一次健身房锻炼。甲每隔2天去一次, 乙每隔4天去一次,丙每7天去一次。4月10日三人相遇,下一次相遇是哪天?
A.5月28日 B.6月5日 C.7月24日 D.7月25日
解析:
题干已知3个人的周期,其中:
甲每隔2天去一次,即周期为3天;
乙每隔4天去一次,即周期为5天;
丙每7天去一次,即周期为7天;
三个周期互质,易知3个周期的的最小公倍数为3x5x7=105;
4月为小月,还剩20天;5月为大月,有31天;6月为小月共30天,即:
105-20-31-30=24天,则答案为C。
例4:某新建小区计划在小区主干道两侧种植银杏树和梧桐树绿化环境,一侧每隔3 棵银杏树种 1 棵梧桐树,另一侧每隔 4 棵梧桐树种 1 棵银杏树,最终两侧各种植了 35 棵树,问最多栽种了多少棵银杏树?
A、33 B、34 C、36 D、37
解析:
根据题意,主干道两侧有不同的循环周期;
A侧为“每隔3棵银杏种1棵梧桐”,即每4棵树为一个循环周期;
B侧为“每隔4棵梧桐种1棵银杏”,即每5棵树为一个循环周期;
则:
A侧的35棵树满足:
35÷4=8…3,即其中一定有3x8=24棵银杏;想要银杏最多,那余下的3棵从银杏开头,即3棵都为银杏;
故A侧共种银杏为:24+3=27棵;
B侧的35棵树满足:
35÷5=7,即为7个完整的循环,共有银杏1x7=7棵;
则两侧共种银杏最多为27+7=34棵。答案选B。
例5:某支部的每名党员均以5天为周期,在每个周期的最后1天内提交1篇学习心得。某年的1月1日是周日,在1月1日—5日的5天内,支部分别收到2篇、3篇、3篇、1 篇和1篇学习心得。问当年前12周(每周从周日开始计算)内,支部共收到多少篇学习心得:
A.170 B.169 C.120 D.119
解析:
由题干条件可知,某支部共有干部2+3+3+1+1=10人;
当年前12周,共有12x7=84天;
84÷5=16…4,
即前12周有16个完整的周期,能收到16x10=160篇心得;
余数为4,即余下的4天应从周日开始,分别收到2篇、3篇、3篇、1 篇学习心得;
即:共收到学习心得160+2+3+3+1=169篇,答案选B。
以上就是非高频提高篇中的周期循环问题~
数量关系 14.高频考点常用解题方法-钟表问题
钟表问题
追及思想
钟表问题中所考查的钟表,一定指针类的钟表,也就是有时针、分钟的表(秒针没有没事,反正也不考),如:


既然一定考有时针和分针的表,那考查的题目一定会跟时针和分针有关,我们不妨来观察观察这两~
时针和分针困在一个圆中不停的转着圈~
每一天从0点开始,时针和分针聚在“12”处开始跑,时针跑的慢,分针跑的快,不停的循环下去~
说着说着,怎么有点环形追及的味道?
环形追及说的什么来着?
回忆一下:

环形追及分同地出发和异地出发;
同地出发:追上n次,即快比慢多跑n圈;
追及距离为=速度差x追及时间=n周长;
异地出发:第一次追上,追及距离为出发时距离AB,即快比慢多跑了AB;
此后追上n次,追及距离=速度差x追及时间=n周长+AB。
这样看的话,时针和分针岂不是也有这样的规律?
时针和分针的问题岂不是可以转化为环形追及问题来求解?
可不是咋的!
●即时针和分针之间的追及也满足:
追及距离=速度差x追及时间;
那这里时针和分针的速度怎么表示呢?
时针分针绕圈跑,跑一圈为360°;

代入公式即有:
追及距离=(6°-0.5°)x追及时间=5.5°x追及时间
有了公式,类似这样的问题就很好解决了;
举个例子:
3 点 19 分时,时钟上的时针与分针所构成的锐角为几度?( )
A.14 度 B.14.5 度 C.15 度 D.15.5 度
怎么解决呢?
3点19分?不零不整的昂~
如果追及的话,我们需要给分针和时针定个位,搞个起点给他们;
既然是起点,就得考虑是同地出发还是异地出发呢?
必然不能是同地,同地的话需要找到上次时针和分针一起的时候,是什么时候呢?头大;
就异地吧?异地中存在一个出发时的距离,在时针追及中,我们知道距离是角度,那我们就找个明显的确切的角度定位分针和时针的出发点,哪个时间的角度明确呢?
三点!对吧,这是一个整点,时针在3,分针在12,两者之间的角度是90度。

以此为起点,分针和时针开始跑,有:
追及距离=速度差x追及时间=5.5°x19=104.5°
那此时两者之间的距离为多少?
即104.5°-90°=14.5°,答案选B。
●那延续环形追及的思路,分针追时针:
同地出发中,追上n次,则分针比时针多跑了n圈;
那一天下来,分针能追上时针几次呢?
也就是转化为考题中常考的“分针和时针重合几次”呢?
我们来分析下:
0点时,时针和分针都在“12”的位置,而此时一天刚刚开始;
时针和分针同地出发开始跑,我们令一圈为60格,12站地;
时针跑的慢,分针跑的快;
分针跑了一圈了,时针才跑了5格,即一站地...
那一天下来时针跑几圈?分针跑几圈呢?
抱歉😲,此刻我脑海中无法控制的单曲循环蔡老师的歌:“时钟每天转了一千四百四十圈...”
停!!这是谁转的?
秒针,是秒针哦,秒针我们说过不会考,谁让他转太多!
那分针转多少?时针又转多少?
秒针每秒走1格,60秒即一分钟走完一圈;
分针每分走1格,60分即一小时走完一圈;
时针每小时走1站地,即5格,12小时走完一圈;
但一天有24个小时,也就意味着走完一天:
时针要走24÷12=2圈、
分针走24÷1=24圈、
秒针走24x60=1440圈;
好了,有结论了:
一天中,时针走2圈,分针走24圈;
那分针时针从0点开始进行同地出发的环形追及,分针比时针多跑了:
24-2=22圈,意味着分针追上了时针22次;
也就是从0点开始,时针和分针相遇了22次,相遇即重合,这就是我们要记住的一个结论:
一天中,时针和分针重合22次;
而每次重合前后,时针和分针都会出现一次垂直;
而两次垂直中间,时针和分针又回呈现一次处在一条直线上,即夹角为180度。
有同学会疑惑垂直和180度怎么来的?
我们这样看:
前一次重合时,二者之间角度为0度;
下一次重合时,二者之间角度仍为0度,但也可以视为360度;
那在从0到360的过程中,一定会经过90、180、270,再到360;
180出现1次,而90和270呈现出来都是垂直,所以垂直出现2次。
整理总结为:
一天中:
时针和分针重合22次,垂直44次,呈现180度22次。
以上即为钟表问题中需知的基础知识;
即:
面对钟表问题,转化为环形追及问题,即可轻松解决~
好坏钟
到这里,有没有同学记得在年龄问题中,我们曾说过每人一年长一岁,除非这人看错钟表了...
错的有点离谱哈,但这里可以引出一个关于钟表的问题:好坏钟问题;
什么意思?
即假设有一个好钟,即一天正常走24小时,每小时60分钟,每分钟60秒的钟;
再有一个坏钟,即一天走着走着就慢了,或者走着走着就快了~~但走着走着又对了~
为啥走着走着就对了?
因为一天只有24个小时呐,快了的一天结束时,它不是0点,而是超过了0点;
慢了的一天结束时,它不是0点,而是还不到0点;
但不管快慢,走上几天,快的会快出12小时,慢的会慢出12小时,总会再回到好钟的标准时间的对么?
好坏钟问题有两种考查方式:
●第一种,就是问坏钟经过多久会重新走对?
假设有一个钟每天快30分钟,某天中午12点将其调至标准时间,则经过多久会再次显示标准时间?
分析:
这个钟每天快30分钟,即半个小时;
那2天就会快出1个小时;
4天快出2个小时.....24天快出12小时..
快出12小时的意思就是转弯了它走错的那些圈,重新回到了12点;
也就是经过24天后该坏钟会再次显示标准时间;
且经过24天的倍数,也是显示标准时间;
变成了周期循环问题了~
那假设有2个坏钟,各有各的坏,当同时给调整为标准时间之后,要再经过多久两个坏钟会同时显示标准时间?
既然1个钟是倍数问题,那2个钟就是最小公倍数问题了
分别找出两个钟显示标准时间所需天数,求最小公倍数即可。
●第二种,就是在坏钟的指导下如何有序安排生活和工作?
乍看有点看不太明白,我们举个例子:
小刚的手表出现了故障,每小时快3 分钟。为了第二天早上六点上课不迟到,他在当晚十一点调好了表,第二天小刚按照自己手表上六点的时间准时到达教室,则实际上他提前了多少分钟:
A.19 B.20 C.21 D.22
来分析:
小刚手表坏了,每小时快3分钟,也就是好表每小时走60分钟的情况下,坏表要走63分钟;
题干要求:“十一点调好表,六点不迟到”;
六点不迟到是好表的世界中的要求,但六点却显示在了坏表上,
即坏表走了23:00-6:00,共7个小时,7x60=420分钟;

则提前了420-400=20分钟,答案选B。
整理总结一下,即有:
钟表问题的考查常转化为:追及问题、周期循环问题和比列关系。
没问题了吧?
没问题的话,我们就一起来实战下,让钟表问题折磨折磨我们~
例1:从钟表1点整开始,时针与分针的第一次垂直与再一次重叠中间相隔的时间约( )
A.43 分钟 B.45 分钟 C.49 分钟 D.61 分钟
解析:
根据题干条件,给定分针和时针的起点,求第一次追出90度和再次追上的时间差;
即两次追及问题;
假设追出90度用时为a,再次追上用时为b;
出发是的距离AB=360/12=30度;
则有:
5.5°a=90°+30°,5.5°b=360°+30°
即有:
5.5°(a-b)=270°
求得a-b=49.09,答案选C。
例2:两只机械手表,一只每天快18 分钟,一只每天慢 15 分钟。现在将两只手 表同时调整到标准时间,则它们再次同时显示标准时间要经过________天。
A.40 B.88 C.178 D.240
解析:
题干给定两只坏表,则找出每只坏表显示标准时间的周期,求最小公倍数;

例3:李强家的钟走时正确,但显示时间被调错了,某天上班出发时,家里的钟显示时间为8:04,到达办公室恰好是北京时间 8:00,下班时间李强于北京时间 17:00 准时离开办公室,到家时发现家里的钟显示的时间为 17:30,如果李强上、下班所用时间相同,则他从家到办公室需要多少分钟?
A.13 B.14 C.15 D.16
解析:
根据题意,李强在办公室时看到的时候为正确的时间;
易知李强在办公室的时间为8:00-17:00,共9个小时;
假设上、下班所用时间给为x分钟,则有:
家里的钟从李强出发去上班至下班到家应走过了:
x+540+x=(8:04-17:30)9x60+26
即有2x=26,求得x=13,答案选A。
以上就是钟表问题啦~
虽然有点烦,但也没有那么难对吧~
数量关系 15.高频考点常用解题方法-方阵问题
方阵问题
方阵问题:即将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数;
提到正方形,不难想到在几何问题中我们介绍过正方形的考查方式为考查其周长和面积;
那既然正方形出现在方阵中,一定也逃不出边长、周长和面积;
但为什么单独介绍方阵问题?
和几何图形有什么区别么?
因为方阵的组成元素一定是人或物,已知或所求一定与人或物的数量有关;
在几何中正方形是4条边;
但在方阵中,每条边是若干个点(人或物);
且方阵问题常考查实心方阵,即为正方形套娃模式,那外圈正方形一定比内圈正方形要大,具体大多少,多多少个人呢?
这就需要我们掌握方阵中会出现的数量关系:
1️⃣最外层人数
方阵最外层一边人数为N,
则最外层的人数为4(N-1);
矩形方阵最外层一边人数为M,另一边人数为N,最外层的人数为2(M+N)-4
2️⃣相邻两层差
方阵中,相邻两层的人数相差8人。
其中,当N为奇数时,最内层为1,第二层为8。
3️⃣层数
方阵最外层一边人数为N,则层数满足:
当N为偶数时,层数=N/2;
当N为奇数时,层数=(N+1)/2;
4️⃣总数

我们以摆放花盆为例,来对上述关系逐一说明:
某广场欲摆放一个花朵方阵,如下图所示:

1️⃣最外层人数
方阵最外层每一条边摆放花数为6;
但不难发现,4个角上的花即在其左或右方的行中,又在其下或上方的列中;
故当计算外层花数时,如果直接4x6来算,则4个角的花每盆都被算了2次,那我们需要将多算的那一次减去;
所以就有外层的花共有224-4=4x(6-1)=20盆。
即若最外层一边花盆数为N,则最外层花盆数为4(N-1)。
2️⃣相邻两层差
再看最外层相邻的这一层,即虚线框内的一层;
既然是方阵,那每一行每一列都要对齐;
所以每一边不能摆6盆的话,最多只能摆4盆,那这一层的花盆数应为:4x(4-1)=12盆;
与最外层差为20-12=8盆;
即若最外层一边花盆数为N,则相邻内层每一边花盆数为(N-2);
则两层花盆数相差:
4(N-1)-[4(N-2-1)]=8
但当N为奇数时,最里层和倒数第二层不再满足这样的规律,从图示出发来看下:

倒数第二层每边为3盆花,那倒数第三层应有花盆数为:4x(3-1)=8;
但最里层为1,所以当N为奇数时,记住该特殊情形。
3️⃣层数
因每层的数都构成等差数列,首项为20,末项为4,公差为-8,则项数为:

项数=最外层一边花盆数/2;
即若最外层一边花盆数为N,
●则当N为偶数时,首项为4(N-1),末项为4,公差为-8,则项数为:

●那当N为奇数时呢?依然有首项为4(N-1),倒数第二项为8,公差为-8,末项为1,
则项数为:

4️⃣总数
再看每边为4盆花相邻的内层,即蓝色虚线框内的一层;
每边应摆放花为2盆,该层花盆总数为4x(2-1)=4;

若最外层一边花盆数为N,则方阵中花盆总数应满足:
●当N为偶数时:

●当N为奇数时:

以上就是方阵问题的介绍啦~
该理解的理解,该记住的记住;
在此基础上,看几道例题感受感受~
例1:一个由边长25 人和 15 人组成的矩形方阵,最外面两圈人数总和为:
A.232 B.144 C.165 D.196
解析:
题干给定边长为25和15的矩形方阵;
易知最外层人数为:
2(25+15)-4=76
相邻层人数为76-8=68;
最外面两圈人数和为:76+68,末位为4,答案选B。
例2:用红、黄两色鲜花组成的实心方阵(所有花盆大小完全相同),最外层是红花,从外往内每层按红花、黄花相间摆放。如果最外层一圈的正方形有红花44盆,那么完成造型共需黄花( )。
A.48 盆 B.60 盆 C.72 盆 D.84 盆
解析:
题干给定方阵最外层花数为44,可知最外层每边应有花N满足:
4(N-1)=44,
则N=12;
可知方阵共有6层,从外到内依次为:红、黄、红、黄、红、黄;
因方阵最内层为4,每层差为8可知黄花数应为:
4+(4+8+8)+(44-8)=4+20+36,末位为0,答案选B。
例3:现有一批正方形的地砖,如拼成一个大正方形则可余62块;若每边都再增加一块,则缺少37块,这批地砖共有多少块?
A.2433 B.2459 C.2463 D.2475
解析:
根据题意,考查方阵中总数问题;
假设第一次拼成的大正方形每边有地砖N块,
则有等量关系:

例4:有绿、白两种颜色且尺寸相同的正方形瓷砖共400块,将这些瓷砖铺在一块正方形的地面上:最外面的一周用绿色瓷砖铺,从外往里数的第二周用白色瓷砖铺,第三周用绿色瓷砖,第四周用白色瓷砖……这样依次交替铺下去,恰好将所有瓷砖用完。这块正方形地面上的绿色瓷砖共有多少块:
A、180 B、196 C、210 D、220
解析:
根据题意,方阵中瓷砖总量为400,则最外层每边瓷砖数为20;
共有层数为10层;
方阵瓷砖分布从外到内依次为:
绿、白、绿、白...绿、白;
因每层绿和白数量差为8,则每层绿和绿之间数量差为16;
最外层每边绿砖数为20,共有绿砖4x19=76;
且共有绿5层;
则根据等差数列求和公式:

或直接求出每项:
首项为76,每层差16,则5层依次为:
76,60,44,28,12,相差和为220
答案选D。
数量关系 16.高频考点常用解题方法-植树问题
植树问题
植树问题:将树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
此为植树问题所涉及的数量关系;
即:
是在一定的线路上,根据距离、间隔长和棵数进行植树的问题。
考试中常考查的植树问题包括以下几类:
两端植树、只一端植树、两端都不值、环形植树;我们分别来看;
1️⃣两端植树,如图所示:

看到上图,是不是似曾相识?
有没有想起插板法?对n个元素创造出的n-1个空格进行插板;
两端植树同样,n棵树会创造出n-1个间隔。
图中植树8棵,共产生7个间隔,故距离=7x间隔长;
即有:
距离/间隔长=间隔数,间隔数+1=棵树;
结论为:棵树=距离/间隔长+1
2️⃣只一端植树,如图所示:

与两端植树相比,其变化很明显,就是少了边上的一棵树;
既然如此,那在两端植树的基础上减掉一棵树即可;
即有:
棵树=距离/间隔长。
3️⃣两端都不植,如图所示:

与上面两种情形相比,变化亦很明显,比两端植树少两边的两棵,比只一端植树,少另一边的一棵;
即有:
棵树=距离/间隔长-1。
4️⃣那环形植树呢,依然来看图示吧:

图示最上面的棕色圆点处为原线段两端的圆点,即原线段在围成圆形后,两端重合;
即:
如果是由两端都植树的线段围成圆,两端的树重合;
如果是由只一端植树的线段围成圆,则为上图所示。
即环形植树问题与只一端植树问题一样;
即有:
棵树=周长/间隔长

结合上一篇的方阵,我们来延伸一下:
如果在正方形四条边上植树,4个顶点都要植,则植树的棵树应满足:
棵树=4x(每边的棵树-1)
在此基础上,植树类问题还常考查:
将原有植树做重新改动的问题;
例如:
道路一侧原先种树时,保持每棵树之间间距为5米,且道路两端都植树;后因绿化调整,改为每棵树之间间距为4米;
如此就一定回涉及到树木棵数的增加且涉及到树木的挪位置;
那是否是所有的树都需要挪位置呢?
我们来分析:
道路起点一端的树不动,第二棵树原本在5的位置上,第二棵树在2x5的位置上...
即每棵树所处的位置均为5的倍数;
改动后:
道路起点一端的树不动,第二棵树在4的位置上,第二棵树在2x4的位置上...
即每棵树所处的位置变为了4的倍数;
那这里就出现了有那么一棵或几棵树必然满足即在5的倍数的位置上,又在4的倍数的位置上,即:
处在5和4的公倍数的位置上,这几棵树必然是不需要挪动的;
那么我们得出结论:
原先间距为a,改动后间距为b,则处在a、b最小公倍数的倍数的位置上的树不需要移动;
且这样的树的数量x满足:
x=距离/a、b的最小公倍数(视两端植、两端都不值而+1或-1)
看到这里,是不是觉得这一篇简直了,好简单~
着实是简单的,数量关系的很多题目都是很简单的,对不啦~
一起来看例题。
例1:施工队要在一东西长600 米的礼堂顶部沿东西方向安装一排吊灯,根据施工要求,必须在距西墙 375 米处安装一盏,并且各吊灯在东西墙之间均匀排列(墙角不能装灯)。该施工队至少需要安装多少盏吊灯?( )
A.6 B.7 C.8 D.9
解析:
题干给定一段距离,且要求某个位置必须安装,以图示简单说明:

根据图示可知:
红点处应满足“对600进行两端不植树”时,其正好处在375的位置;
我们说处在的某个位置,应为间隔长的倍数;
且距离亦为间隔长的倍数;
可知375和600应同为间隔长的倍数;
此时要求树棵树最少,则需间隔长最大;
即问题转化为求375和600的最大公因数;
因:375=5x75=5x5x15=5x5x5x3;
600=5x120=5x4x5x3x2;
可知间隔长最长可取5x5x3=75,则植树600/75-1=7,答案选B。
例2:在长581 米的道路两侧植树,假设该路段仅两端有路口,要求在道路路口 15 米范围内最多植 1 棵树,并且相邻两棵树间的距离为 4 米,问最多能植多少棵树?
A.137 B.139 C.278 D.280
解析:
题干给定一段距离,给定植树要求:
“路口15米范围内最多植1棵”,设问问“最多植多少”;
我们先将道路两端路口切掉不考虑,对余下的581-15x2=551植树;
已知间隔长=4,即有棵数=551/4+1;
其中551/4=137...3,即551米中最多种138棵树;
再加回路口的2棵,即单侧植树最多为140棵;
两侧即为140x2=280棵,答案选D。
例3:为加强治安防控,现计划在一段L 形的围墙(如下图)上安装治安摄像头, 其中 A 点到 B 点长度为 750 米,B 点到 C 点长度为 1350 米。按要求 ABC 三个位置必须安装一个摄像头,且相邻两个摄像头之间的距离要保持一致,则整段围墙至少需要安装( )个摄像头。

A.14 B.15 C.16 D.17
解析:
根据题意,给定两段距离,要求间隔长一致;
可知需寻找750与1350的公因数;
求摄像头数最少,则需要间隔数最大;
因:750=5x5x5x2x3;1350=5x3x3x3x5x2;
可知两数的最大公因数为:5x5x2x3=150;
即有摄像头数=(75+1350)/150+1=15,答案选B。
例4:某文艺汇演的舞台为一个边长为10m 的正六边形,节目“千手观音”中, 演员需排成一列正对观众,为保证演出效果,两个演员之间要保持 50cm 的距离,问该舞台最多能站多少名 “千手观音”的演员?

A.31 B.35 C.39 D.41
解析:
根据题意,给定正六边形,用来种树的即正六边形的高,间隔长为50cm,如图:

则有:棵数=距离/间隔数+1=17.32/0.5+1=34.64+1=35.64
取小为35,答案选B。
例5:有某公园举办春节花展,在周长400 米的中心区布置了环形花槽,并在花槽上每隔16 米挂一只灯笼,不久后元宵灯会临近,公园决定增加并挪动一些灯笼,但仍保持灯笼间距相等。已知加入新灯笼后,共有 5 只旧灯笼没有移动,则调整后的灯笼间距最大为()米。
A.12 B.10 C.8 D.5
解析:
根据题意,给定环形植树、植树要求,并做改动;
改动前间距为16,改动后有5只旧灯笼没有移动;
即有:
不移动数量=距离/前后间隔的最小公倍数,即:
5=400/最小公倍数,最小公倍数=80;
即16与改动后的间距的最小公倍数为80;
代入选项验证,答案为B。
例6:一根绳子对折三次后,从中间剪断,共剪成()段绳子。
A.9 B.6 C.5 D.3
解析:
题干给定??什么?绳子...
植树和绳子有关系么?
这就联想到我们的插板法啦;
既然是剪绳子,就叫剪刀法好了:
一根绳子想要断成2截,需要剪一刀;
断成3截,要剪2刀;
反过来,剪2刀,即给绳子剪出2个空,可以断成3截;
剪n刀呢?即给绳子剪出n个空,可以断成n+1截。
...
就本题而言,一根绳子对折3次?啥意思?
此处建议顺手扯一张纸巾试试;
对折1次后,绳子变为2折;
对折2次后,绳子变为4折(把2折都进行了对折);
对折3次后,绳子变为8折(把4折都进行了对折);
这时,给8折的绳子来一刀,即一刀剪了8个口子,8个口子把绳子剪成几段?
8+1=9段,答案选A。
以上就是植树问题及其演化题型,对比之前的知识点,简单了很多~
数量关系 17.高频考点常用解题方法-统筹优化
提到统筹优化,我们一定听过这样的表述:
统筹优化合理安排、科学统筹优化各类资源、做好工作统筹...等等;
这么多的“统筹”到底在干嘛?
其实说到底是打破常规思路,想方设法把资源充分利用起来,使效率最大化,时间最优化,费用最少化等;
统筹优化类问题题型多样,规律较为统一,包括时间统筹类问题、空瓶换水问题、天平问题、过河爬井问题等;
题目呈现形式非常接近我们日常生活,解题思路也是结合我们的日常实际,即几个方案供人选择,其中要找出一个最优的方案。
我们用两篇的篇幅,将所涉及的题型逐一介绍;
这一篇我们先来看时间类统筹问题和空瓶换水问题。
统筹优化-时间类统筹
题型特征:给出一些事件及各自所需时间,需要经过合理的统筹规划,求出总的最短时间;
比如:排队取水、烙饼等;
思路:先罗列需要做哪些事?哪些事可以同时进行?
若要求做事时间加等待时间最短,因无论如何安排,完成事情总时间是不变的,可以减少的只有等待时间,则按时间短到长对事件进行排序,即可缩短等待时间。
解题方法:枚举法、逻辑推断、逆向思维
我们通过几道例题来梳理感受下;
例1:某餐厅要用三个炉灶做出9道菜肴,做完各道菜肴需要的时间分别是1、2、3、4、4、5、5、6、7分钟。每个炉灶在同一时间只能做一道菜肴。那么,最少经过()分钟,该餐厅可以做完全部菜肴。
A.11 B.12 C.13 D.14
解析:
题干给定不同事件的时间,求各事件全部完成的最少时间;
因有3各炉灶,故存在同时进行的事件,我们尝试枚举推断:
时间最长的事件用时7分钟,那先为其启用一炉灶,同时安排6和5上灶,先将时间长的做完,接下来哪个灶结束即安排下一道上灶,列举如下:

即:
第一梯队安排7、6、5上灶;
5结束即刻上5,6结束即刻上4,7结束即刻上4;
6+4=5+5=10结束之后,即可上3和2;
7+4=11结束之后上1,此时旁边炉灶还没结束;
耐心等待,总用时应为5+5+3=13分钟,答案选C。
例2:小明家里来了客人,妈妈让他给客人烧水沏茶。烧开水需要10分钟,洗紫砂茶壶和茶杯需要2分钟,洗开水壶需要1分钟,买茶叶需要5分钟,沏好茶需要1分钟。小明初步估算了一下,完成这些事情要19分钟。为了使客人早点喝上茶,你认为怎样安排最合理,至少需要多少分钟才能让客人喝上茶水?( )
A.11 B.12 C.13 D.15
解析:
先按先后顺序分类罗列需要做的事情:
洗开水壶➡烧开水;
洗茶壶茶杯、买茶叶➡沏茶;
其中不能同时做的事为:洗开水壶、烧开水和沏茶,一定是先洗、再烧,开了才沏茶,用时:1+10+1=12分钟;
而这个过程中,可以买茶叶、洗茶壶茶杯,用时5+2=7分钟;
可知答案选B。
例3:张局长找甲、乙、丙三名处长谈话,准备与甲谈10分钟,与乙谈12分钟,与丙谈8分钟。秘书带三人到局办公室后对谈话的顺序做了合理安排,使三人谈话的时间与等待时间之和为最短,则这个最短时间是?
A.46分钟 B.53分钟 C.54分钟 D.56分钟
解析:
设问要求“谈话+等待”最短,即需要按照用时短到长来安排;
需要完成的事为:甲10分钟,乙12分钟,丙8分钟;
排序为:先丙,再甲,后乙;
“谈话”总时间为:8+10+12=30;
“等待”时间为:(甲等待)8+(乙等待)8+10=26;
总用时最短为30+26=56分钟,答案选D。
例4:用一个饼铛烙煎饼,每次饼铛上最多只能同时放两个煎饼,煎熟一个煎饼需要2 分钟的时间,其中每煎熟一面需要一分钟。如果需要煎熟 15 个煎饼,至少需要多少分钟?
A.14 B.15 C.16 D.30
解析:
根据题意,每次可同时放2个饼,但任务总量为奇数,则一定会出现需要优化的饼;
我们来分析:
如果按部就班的每次放2个饼,同时上锅,同时翻面;则2分钟可以煎熟2个;
一直这样循环下去,即:
4分钟煎完4个,6分钟6个,8分钟8个...14分钟14个,剩下最后一个空落落的自己熟了正面再熟反面;
从最后一个的孤单可以看出,这并不是最好的安排;
那如果想要这个饼不孤单,我们把它的上一锅请回来,让时光倒流一下,看这3张饼能不能商量一个好方案:
3张饼共6面,每次可以放2张,算下来应该可以用
6/2=3分钟煎熟;
这就需要我们安排3张饼这样上锅:
1正+2正、1反+3正、2反+3反;
这样一来,都不孤单啦,总用时:12+3=15分钟,答案选B。
统筹优化-空瓶换水
空瓶换水:指的是给出n个空瓶可以换m瓶水这个规则,问考生有几个空瓶可以喝到多少水或者想喝一定数量的水最少需要自己购买几瓶等类似的问题。
有同学的记忆动了,说俺小时候就是这样的,拿我爸喝完的啤酒瓶去换糖...但是,没算过,哈哈,就有了就去换,一步一步换呐,哈哈哈
记忆中是一步一步换,那如果做题呢?做题如果一步一步换,需要的时间可是有点多呀,而且换到最后可能还会遇到那么点小问题,我们不妨通过一道例题来试着换一换;
例:如果4个空的矿泉水瓶子可以换一瓶矿泉水,现有十五个空的矿泉水瓶子,那么不交钱最多可以喝矿泉水( )瓶。
A.3 B.4 C.5 D.6
来分析分析:
假设咱一步一步去换,现在有15个空瓶子,15/4=3...3;
那现在可以先换到3瓶水,喝完又产生3个空瓶子,加上原先剩下的3个,又有了6个;
6=4x1+2,又换到一瓶,喝!
又产生1个空瓶子,此时有1+2=3个空瓶子;
悲伤...关键时间就差这临门一瓶,咋办?
不换啦?
再想想办法:
可不可以先赊一瓶呐?这样喝完就又有了3+1=4瓶,把4个瓶子还给老板;
任务完成!
这会喝了多少了?
回去看看:3+1+1=5瓶,答案选C。
但这样的一步一步换,着实是繁琐又费时,如何能快速的解决呢?
就本题而言:
4个空瓶=1瓶水,即:
4个空瓶=1个空瓶+1水(无瓶,被喝下肚);
移项得:3个空瓶=1水;
即有3个空瓶可换得1水被喝下肚,那么15个空瓶可以喝到15/3=5瓶水。
沿着该思路继续推,n个空瓶可以换m瓶水怎么换?
n个空瓶=m瓶水,即:
n个空瓶=m个空瓶+m水;
移项得:(n-m)个空瓶=m水;
假设此刻有p个空瓶,则可换得水为:

继续推:规则依然是5个空瓶可以换1瓶水,那假设要喝到z瓶水,最少要购买几瓶水?
这时候怎么办呢?
我们这样来思考:
假设买了z瓶水,全部喝完后,得到z个空瓶;
z个空瓶可换到z/5瓶水;
但是现在已经喝够了呐,咋办?
把这z/5瓶水退掉,即实际买水量为:

即:n个空瓶可以换m瓶水,在该规则下要喝到z瓶水,最少要购买几瓶?
先买z瓶,全部喝完,得到z瓶水;

理解了吧?
公式的推导很简单,甚至不用记公式,理解了过程,怎么换都不在话下。
例1:12个啤酒空瓶可以免费换1瓶啤酒,现有101个啤酒空瓶,最多可以免费喝到的啤酒为()。
A.10 瓶 B.11 瓶 C.8 瓶 D.9 瓶
解析:
根据题意,12个啤酒空瓶换一瓶啤酒,即有:
11个啤酒空瓶=喝1啤酒;
则101个空瓶可换:
101/11=9...2,答案选D。
例2:5个汽水空瓶可以换一瓶汽水,某班同学喝了161瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少需要买汽水多少瓶?
A.129 B.128 C.127 D.126
解析:
根据题干,5个汽水空瓶换一瓶汽水,

例3:31 个小运动员在参加完比赛后,口渴难耐,去小店买饮料,饮料店搞促销,凭三个空瓶子可以再换一瓶,它们最少买多少瓶饮料才能保证一人一瓶?( )
A.21 B.23 C.25 D.27
解析:
根据题意,至少需要有31瓶水,才能保证一人一瓶;

以上是统筹优化中的时间类统筹和空瓶换水问题;
又想强调一下了:
理解过程,尝试推导;
推导会使结论的记忆变的轻松有趣;
梳理完过程,题目会变的非常之简单。
统筹优化-天平问题
常考题型:
1️⃣用天平与砝码将已知重量的物品分成若干堆,并告知每堆的重量,问最少称多少次?
2️⃣用天平找最重,找瑕疵。
思路:
1️⃣称重最少次
面对天平,最直观想法就是是利用砝码一次一次称,但这样操作并不能确保次数就是最少的。
那如何突破呢?
我们来想,砝码是什么?有什么作用?

砝码:计算重量的标准器,揭示物品重量的谜底;
那我们可不可以这样想,将上图中左侧的x放入右边,x是不是可以当作20来用?
即将其视作一个新的砝码,去揭开其他重量的面纱?
例如:一架天平,只有5 克和 30 克的砝码各一个,要将 300 克的食盐平均分成三份,最少需要用天平称几次:
A.6 次 B.5 次 C.4 次 D.3 次
先分析题干,只有一个5g,一个30g的砝码,要将300克平均分成三份,即每份为100g;
那我们称出第1个100g,用这个100g当砝码再称出第2个100g,剩下的即为第3个100g,对吧?
开始称咯:
第一次称:
必然是先把5g和30g都放上去,称出一份“35g”的盐;
此时,我们有了3个砝码:5g、30g、“35g”;
要称出100g,还差100-35=65;
所以第二步看能不能称出65g?
第二次称:
来匹配砝码:65=30+35;
此时,我们有了4个砝码:5g、30g、“35g”、“65g”;
且将35g和65g放置在一起即为第一个100g,即第5个砝码:“100g”;
第三次称:
用“100g”的砝码称出100g的盐;
此为第2个100g,剩余的盐即为第3个100g;
可知最少称3次,答案选D。
2️⃣找最重、找瑕疵
啥意思?怎么找呢?
我们来试着分析下:
假设现在有n个物品里,其中有1个是次品,并且次品比正品重,现在给一个天平,要求称出那个次品,问最少称多少次就一定能称出/最优方案下,至多需要称多少次?
怎么着手呢?
直接看出来?看不出来哦,这可是盲盒呢~
我们给n赋个值先,假设n为9,其中有1个次品,次品比正品重;
也就是说当我们拿2个出来分放天平左右,且正好拿到一个正品一个次品,那么天平势必会不平衡,倒向重的一边,即倒向了次品;
但是话说回来了,9个物品,任意拿2个,有多少可能性?
排列组合的DNA动起来没?

这离最少次数、最优方案也太远了...🙀
❗但是不妨碍我们继续分析,还记得称300g盐的事么?要称3份,我们称出了第一份盐,用第一份盐称出了第二份,剩下的自然就是一份;
那9个物品,我也分成3份,势必是:2份都是正品、另一份中有次品;
盲猜2份上称,如果平衡,那说明这2份是正品组;
如果不平衡,那么倒向的那一边重,里面有次品。
次品这一份有3个,那就再重复一次,一定能选出了!
整理一下即有:
假设有3个物品,其中有一个是次品,最少几次称出?
1次!即1次可以解决最多3个物品;
假设有9个物品,其中有一个是次品,最少几次称出?
2次!即2次可以解决最多9个物品。
有同学说,那为啥一定要赋值9呢,如果是8个呢?7个呢?6、5、4呢?..
来分析下呗,假设是8个,依然分3组,咋分?
肯定3、3、2呐,谁上称?3和3!
如果平衡,必然在2里,那再上一次称,共2次。
如果不平衡,必然在倾向的那一份3中,这一份3中,一次称出,共2次!
假设是7个,依然分3组,咋分?
肯定3、3、1,谁上称?3和3!
如果平衡,就是1了;
如果不平衡,又必然在倾向的那一份3中,这一份3中,一次称出,共2次!
再假设是5,依然分3组,咋分?
那就2、2、1,谁上称?
...
是不是都不用继续写下去了?清楚了吧?
沿着这个思路:
1次解决最多3个,2次解决最多9个,3次呢?
我们倒着看:
最后一次解决3个;
倒数第二次解决3组,每组3个,共9个;这9个是上一次找出来的;说明上一次每组是9个;
第一次解决3组,每组9个;共27个。
看出来了么?
其实就是以3为底数,以次数为幂,

此为结论,各位牢记!
来看例题~
例1:一只天平有7克、2克砝码各一个,如果需要将140克的食盐分成50克、90克各一份,至少要称几次?
A.3次 B.5次 C.4次 D.6次
解析:
题干给定7g和2g的砝码,要分140为50和90;
怎么称?称出50,剩下的就是90;
称第一次:
上7和2,称出9,且得第三个砝码“9”;
但这离50有点远....
想想办法,如果能创造个“25”的砝码,会快很多;
试试就试试:
25=7+18=7+9+9;
现在有3个砝码了:7、2、“9”
那称第二次:
上7、9,称出16;
16和9混合得到25,此为第四个砝码“25”;
那称第三次:
上“25”,称出25;25和25混合,称出50;
剩余的为90;答案选A。
(实在不想这样统筹规划的,那就蒙吧,蒙题大法蒙最小,逮住一题是一题)
例2:8枚一元真币和1枚一元假币混在一起,假币与真币外观相同,但比真币略重。问用一台天平最少称几次就一定可以从这9枚硬币中找出假币?()
A.2 次 B.3 次 C.4 次 D.5 次
解析:
题干要求解决9个物品中一个次品的问题,要计算么?
完全不需要,绝了,太简单了,直接秒A。
例3:体育彩票22 选 5 中使用的 22 个彩球除编号不同外,其余完全一样。由于生产过程疏忽,22 个彩球中有一个球的重量略重于其它球。现需用天平将该球找出,那么,在最优方案下,最多要使用天平:
A.3 次 B.4 次 C.5 次 D.6 次
解析:
题干要求解决22个正品中1个次品的问题,次品问题看3的幂;

本题中9<22<27,需要3次,答案选A。
例4:某粮油店只有一台不等臂的天平和一个5千克的砝码。顾客要买10千克大米,店员先将砝码放在左盘,大米放在右盘,平衡后称得的大米给顾客;再将砝码放在右盘,大米放在左盘,平衡后又将第二次称得的大米给顾客。请问这种称法对谁更有利?
A.顾客 B.店主 C.都一样 D.不确定
解析:
题干中出现“不等臂的天平”啥意思?
就是不准嘛,那不准的话,怎么理解?
天平说白了是一个杠杆,杠杆分省力杠杆、费力杠杆和等臂杠杆,标准的天平肯定是等臂杠杆,那题目中这个不等臂,必然会出现所称物品质量上的误差;
我们都知道,天平(如图)中应满足:

AX=BY,即如果A>B,则有X<Y;如果A<B,则有X>Y。
假设本题用的天平为A>B,

所以顾客得到的大于10千克,答案选A。
以上就是统筹优化中的天平问题;
内容多么?
看似不少,其实不多;大部分都是一个思考的过程,把这个过程拎清楚了,你的记忆会伴随你很久很久。
统筹优化-过河爬井问题
题型特征:
M个人过河,船能载N个人。需要A个人划船,共需过河几次?
蜗牛掉井里,井深m米,每天爬上a米,又滑下b米,几天可以爬出?
思路:
是不是M个人过河,船载N个人,M/N求出次数?
那每天爬a米,又下滑b米,是不是每天爬了(a-b)
米,m/(a-b)求出天数?
都不是哈~
过河问题:需要有人来划船,势必会占据船上的空位,所以每次并不能送N个人过河;
爬井问题:假设m=19,a=5,b=3,那么每天能爬上去2米,19/2=9.5,这么说来要10天;
但是呢?!爬到第8天的时候,其实爬完了8x2=16米,还剩19-16=3米,3<5,蜗牛哥在第9天就不需要下滑了,出井了!
所以这类题应该如何着手呢?
先看过河:
不是求次数么,我们假设次数为x;
那可以肯定的是:划船的这A个人,反复过河x次;
则从人本身出发,过河的人为M个;
但是从人次来看,过河的人次为M-A+Ax人次;
假设每一次船都坐满了,那过河的人次为Nx,
而实际情况是可能最后就剩下1个人或2个人等有空座位的情况,这就意味着,上面提到的几个量之间存在不等式关系:

同理,爬井问题也是一样的,假设需要爬x天;
那第x天一定是出去了,意味着不再下滑,假设最后一天爬完a才除去,
即有“理论井深”为:
a+(a-b)(x-1)
但实际上,最后一天可能只爬了1米或2米等还有体力的情况,即实际井深与“理论井深”之间存在不等式关系:

所以在爬井问题中,下滑的米数可视为过河问题中划船的人,即有:
公式为:

理解了么?可以过河了不,会爬井了吧?
来看例题。
例1:49名探险队员过一条小河,只有一条可乘7人的橡皮船,过一次河需3分钟。 全体队员渡到河对岸需要多少分钟?()
A.54 B.48 C.45 D.39
解析:
根据题意,49个人,每次可乘坐7人,怎么没说需要几个人划呢?
不明说就是一个人划哈;
即有:
总人数49,划船的人1,每次可坐7;
则:(49-1)/(7-1)=48/6=8,即8次即可全员过河;
但其中有7次需要往返,故共有2x7+1=15次单程,
所需时间为3x15=45分钟,答案选C。
例2:一人爬有20个阶梯的楼梯,假定每次向上爬5个阶梯,又下走3个阶梯,问该人需几次能跑到楼梯顶部?
A.7 B.8 C.9 D.10
解析:
根据题意,总数为20,每次上爬5,下走3,则:
(20-3)/(5-3)=17/2=8.5,向上取整,即需要9次,答案选C。
例3:32名学生需要到河对岸去野营,只有一条船,每次最多载4人(其中需1人划船),往返一次需5分钟,如果9时整开始渡河,9时17分时,至少有( )人还在等待渡河。
A. 15 B. 17 C. 19 D. 22
解析:
根据题意,过河人数为32人,每次载4人,划船需1人;
往返一次为5分钟,单程2.5分钟;
9时整开始渡河,到9时17分,共有17分钟;
17=2.5+5+5+4.5;
即第一批过3人、第二批过3人、第三批过3人;
到9点17分时,第四批在渡河途中,差点到岸;
则还有32-9-4=19人在等待!
答案选C。
例4:甲乙两人计划从A地步行去B地,乙早上7:00出发,匀速步行前往,甲因事耽搁,9:00才出发。为了追上乙,甲决定跑步前进,跑步的速度是乙步行速度的2. 5倍,但每跑半小时都需要休息半小时,那么甲什么时候才能追上乙?()
A. 10:20 B. 12:10 C. 14:30 D. 16:10
解析:
根据题意,过河?怎么不过河了?改步行咋....
不过河,过路也行?
来看看:
乙先走,乙匀速;甲后跑,但跑半小时休息半小时;
可知甲起初落后乙一个距离,此即为甲要追逐的距离,将其视为井深;
甲跑步的时候,速度比乙快,则视为上爬;
甲休息的时候,速度比乙慢,则视为下滑;
那我们需要将井深、上爬、下滑表示出来,如何表示呢?
题干中存在比例关系,甲跑步速度为乙步行的2.5倍,赋值乙为4,甲为10;
则井深为2x4=8,上爬为0.5x(10-4)=3,下滑为0.5x(4-0)=2;
可知需要“天数”(一小时为一“天”)为:
(8-2)/(3-2)=6,即为6“天”=6小时
而实际第5.5-6小时在休息,所以实际用5.5小时追上了乙;9:00出发,用时5.5小时,即在14:30时追上,答案选C。
以上就是统筹优化中的过河爬井问题;
还是那句话:
知识点的讲解大部分都是一个思考的过程,把这个过程拎清楚了,你的记忆会伴随你很久很久。
数量关系 18.高频考点常用解题方法-盈亏问题
盈亏问题
盈亏问题最早见于中国的《九章算术》,书中原文为:
“今有(人)共买物,人出八,盈三;人出七,不足四;问人数物价各几何。”
这段文字译为今文是:几人共同出钱买东西,每人出8元则多3元,若每人出7元则少4元,求人数和物价。
即给定了:
情境“出钱买东西”;
两种分配方式:每人8元、每人7元;
对应的盈亏:盈-多3元、亏-少4元。
求人数和物价,怎么解?
有同学想到列方程,人为x,物价为y;
8x-3=y,7x+4=y
完全没问题,解出来7个人,53元。
但到这里,有同学有疑问,觉得这个表达有点像余数问题,确实是这样的哈,但不完全一样;
还记得余数问题中,我们讲到了:
余同加余、和同加和、差同减差,都不同看倍数。
那在盈亏问题中,有情境为:一盈一亏或两盈或两亏,一般情况下余数不同,和也不同,多数差也不同;更像都不同的余数问题,但仍有区别;
区别在哪里呢?
余数问题中常出现2-3种分配方案,盈亏中只出现两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,而在数量关系的考查中一般为一盈和一亏。
有同学说既然像都不同,而都不同中要看倍数,这里直接看倍数可以么?
没问题呐,不过看问谁,问物价可以看倍数,问人数,可就不好下手咯。
那如何解答呢?
列方程完全没问题,那有没有更快的办法?
我们回到上面的例子:

其中:
8和7为两次分配的不同标准,4和-3是不同分配标准下的余数;
那8-7即两次分配标准之差;
4-(-3)为对应分配标准余数;
那x是什么?y又是什么?
本题中,人凑钱,x是人,y是物价;
那盈亏问题除了考查人凑钱,还会有什么类型的题型呢?
数量关系中常考查:坐车、住店、分东西
其中:
人坐车时,8和7是每车坐的人,-3和4是对应的余数,x是车,y是人;
人住店时,8和7是每个店住的人,-3和4是对应余数,x是店,y是人;
分东西时,8和7是每个人分到的东西,-3和4是对应余数,x是人,y是东西;
即:谁被分配谁是y,谁接收它们谁是x。
公式是:

什么是不看盈亏的数值?
就是盈4亏3,只看4和3;盈5亏2,只看5和2;
总结一下:
盈亏问题,常见坐车住店分东西,记住公式,代入数据,迅速求解。
来看简直不要太简单的例题。
例1:某企业员工组织周末自驾游。集合后发现,如果每辆小车坐5人,则空出4个座位;如果每辆小车少坐1人,则有 8 人没坐上车。那么,参加自驾游的小车有:
A.9 辆 B.10 辆 C.11 辆 D.12 辆
解析:
根据题意,两次分配,可知是盈亏问题;
人坐车,人是y,车是x;
两次分配标准:5和4,且一盈一亏;
则车数=盈亏数值和/标准差=(4+8)/1=12,答案选D。
例2:某机关事务处集中采购了一批打印纸,分发给各职能部门。如果按每个部门9 包分发,则多 6 包;如果按每个部门 11 包分发,则有 1 个部门只能分到 1 包。这批打印纸的数量是:
A.87 包 B.78 包 C.69 包 D.67 包
解析:
根据题干,出现两次分配,可知为盈亏问题;
分东西,东西是y,部门是x;
两次分配标准:9和11,且一盈一亏;
盈为9,亏为:有1个部分只能分到1包,则少10包。
则部门数=盈亏数值和/标准差=(6+10)/2=8,
x=8,则y=9x8+6=78,答案选B。
暂停一下,问的是y,用倍数试试;
根据题意,y应满足:
y+10为11的倍数,排除A和B;
y-6为9的倍数,答案选B。
例3:林先生要将从故乡带回的一包泥土分成小包装送给占其朋友总数30%的老年朋友。在分包过程中发现,如果每包 200 克,则少 500 克;如果每包 150 克,则多 250 克。那么,林先生的朋友共有多少人?
A.15 B.30 C.50 D.100
解析:
根据题干,出现两次分配,可知为盈亏问题;
分东西,东西是y,老年朋友是x;
两次分配标准:200和150,且为一盈和一亏;
则老年朋友=盈亏数值和/分配标准差=(500+250)/50=15
林先生的朋友共有15/30%=50,答案选C。
例4:若干学生住若干房间,如果每间住4人,则有20人没地方住,如果每间房住8人,则有一间房只有4人住,问共有多少学生 ( )
A.30 B.34 C.40 D.44
解析:
根据题干,出现两次分配,可知为盈亏问题;
分房间,学生是y,房间是x;
两次分配标准:4和8,且为一盈和一亏;
盈为20,亏为:每间房住8人,只住了4人,还少4人。
则房间数=盈亏数值和/分配标准差=(20+4)/4=6
学生总数为=4x6+20=44,答案选D。
例5:某志愿服务小组购买一批牛奶到一敬老院慰问老人,如果送给每位老人四盒牛奶,那么还剩28盒,如果送给每位老人5盒,那么最后一位老人又不足4盒,则该敬老院的老人人数至少是:
A.27 B.29 C.30 D.33
解析:
根据题干,出现两次分配,可知为盈亏问题;
分牛奶,牛奶是y,老人是x;
两次分配标准:4和5,且为一盈和一亏;
盈为28,亏为多少呢?
由于条件为“最后一位老人不足4盒,即<4盒,最多为3盒”,想要老人最少,则分的牛奶要最多,即当最后一位老人拿到3盒时,敬老院老人人数最多,此时不足的数为2盒。
则老人数=盈亏数值和/分配标准差=(28+2)/(5-4)=30,答案选C。
例6:某企业将一批防疫物资赠送给“一带一路”沿线国家的若干家医院。如果向每家医院赠送10箱口罩和7箱防护服,则剩余的口罩比防护服多20箱。如果向每家医院赠送12箱口罩和8箱防护服,则还缺8箱口罩和11箱防护服。如该企业决定额外采购物资,口罩和防护服按2:1的比例向每家医院捐赠相同数量的物资,且捐完后没有剩余,问口罩和防护服总计至少还要采购多少箱?
A.54 B.63 C.75 D.87
解析:
根据题干,出现两次分配,可知为盈亏问题;
分物资,物资是y,医院是x;
两次分配标准:
口罩为:10和12,且为一盈和一亏;
盈为m,亏为8;
防护服为:7和8,且为一盈和一亏;
盈为m-20,亏为11;
可知医院数=盈亏数值和/分配标准差
即有:
医院数=(m+8)/2=(m-20+11)/1
m+8=2m-18,解得:m=26,医院数=17
根据条件,要继续采购,使口罩与防护服之比为2:1,且分配没有剩余,
现有口罩10x17+26=196,防护服8x17-11=125。
125/17=7...6,则至少采购17-6=11件防护服;每家医院分得8件;
由此推知每家医院分口罩量为8x2=16盒,则需口罩共:16x17=272盒,
则需采购272-196+11,末位为7,答案选D。
以上就是盈亏问题;
数量关系 19.高频考点常用解题方法-比赛问题
比赛问题
说到比赛问题,有同学的DNA动了...
就拿我们家猪队友来说,喜欢踢足球,一周必须踢2次,还跟着球队报名参加小破地方的各种比赛,除了用脚踢,还喜欢用手柄踢,还喜欢看;除了足球,还喜欢打篮球,看篮球赛,夸夸这个,骂骂那个;然后还要看拳击,还要打台球.....一到各种赛季,就像个永动机...
扯远了,说到比赛问题;
既然是比赛,一定是有比赛规则的,一定是有赛制的!
赛制有哪些?
淘汰赛、循环赛、复活赛制、积分赛制....
那考试要考什么?
常考淘汰制和循环制,其他的就别操心了,这就够了。
●我们先看淘汰赛:
在这种赛制中,赛员两两相对,输一场即淘汰出局;
每一轮淘汰掉一半选手,直至产生最后的冠军。
很好理解对吧~
举个简单的例子:
10个队参加淘汰赛,
第一轮:两两相对,可分为5组,每个组一胜一败,败的淘汰,胜的小组出线~
第二轮:两两相对,分为2.5组?那个0.5代表只有自己呀;
这时就出现一个概念叫轮空,4队分2组对抗,剩下的一组轮空,那谁轮空?
...不讨论,哈哈...
那第二轮结束时,2个组中每个组一胜一败,败的淘汰,另外2个组出线~
第三轮:还有几个组?3个,2+1,还有1个组轮空,比赛结束还剩2组;
第四轮:剩下的这两对决~
此时比赛一共进行了4轮,那比赛一共打了几场呢?
要加一下么?
想加就加一下好了,从第一轮到第四轮共有场次为:5+2+1+1=9场;
那每次都要这样算这样加么?
其实不用啦,10个队参加淘汰赛,最后决出1个冠军,那相当于剩下9个都被淘汰了;
每轮比赛淘汰一半的人,其中每场比赛淘汰1个队;
所以要淘汰9个队,需要的比赛场次为:10-1=9场。
整理总结一下:
淘汰赛:每场比赛淘汰1队,n个队参加淘汰赛,需比赛场次为n-1次;
每轮比赛中淘汰一半的人,当该轮比赛中参与队数为奇数时,则有一队轮空,除该队外的队伍被淘汰一半。
(淘汰赛也分单败淘汰赛和双败淘汰赛,但考试并不会这么复杂,不用研究哈)
●再来看循环赛:
指每个队都能和其他队比赛一次或两次,包括单循环、双循环和分组循环三种方法;
考试考什么?单循环和双循环;
其中单循环即所有参加比赛的队均能相遇一次,最后按各队在竞赛中的得分多少、胜负场次来排列名次;
双循环即所有参加比赛的队均能相遇两次,最后按各队在两个循环的全部比赛中的积分、得失分率排列名次。
双循环和单循环的区别就在相遇次数上,双循环分主客场,即在你的场咱俩相遇一次,在我的场咱俩相遇一次;
很容易推出双循环赛制中的场数应为单循环赛的2倍。
那么n个队参加单循环比赛,要比多少场呢?
很简单,从n个队中任选2队比赛,情况数即比赛场数,即有:

那参加双循环呢?
从n个队中任选2个,且分主客场(即考虑内部顺序),即有:

有同学想不太清楚各队怎么循环参赛,如何编排轮次呢?
这里我们简单了解下:
在单循环赛制中,不论参赛队是奇数或偶数,均按偶数进行编排。
如果参赛队为奇数,则在队数最后加一个“0”,使其成为偶数。碰到0的队则轮空。
在编排时,把参赛队平均分成左、右各一半,左一半号数由序号1依次自上向下排,右一半号数按顺序依次自下向上排,然后用横线相连,即构成比赛的第一轮;
从第二轮开始,轮转的方法有多种,我国传统的编排方法为固定轮转编排:即以左边第一号固定不动,逆时针转动,逐一排出。
举个简单的例子:
7个队参加单循环比赛,队数为奇数,则在对数最后加0;
则每一轮次安排列表如下:(左边第一号固定不动,逆时针转动)

这样可以理解了吧?
一共8个位,左1固定不动,那其他7个数要转完一圈需要转7次,即需要安排7轮比赛;
又能得到一个结论:
n个队参加比赛,n为奇数时,轮数=队数;
n为偶数时,轮数=队数-1。
理解了以上,记住了结论,来看例题。
例1:某羽毛球赛共有23支队伍报名参赛,赛事安排23支队伍抽签两两争夺下一轮的出线权,没有抽到对手的队伍轮空,直接进入下一轮。那么,本次羽毛球赛最后共会遇到多少次轮空的情况?
A.1 B.2 C.3 D.4
解析:
根据条件“两两争夺下一轮出线权”,可知考查淘汰赛;
第一轮:23个队,其中22个队两两对决,淘汰一半,11个队胜出;余1队轮空;
第二轮:12个队,两两对决,淘汰一半,余6个队;
第三轮“6个队,两两对决,淘汰一半,余3个队;
第四论:3个队,其中两队对决,淘汰1队,余1队轮空;
第五论:2队对决,争冠。
即共遇到2次轮空情况,答案选B。
例2:2020欧洲杯,共有24个队参加,它们先分成六个小组进行循环赛,决出16强,这16个队按照确定的程序进行淘汰赛,最后决出冠、亚军和第三、四名。总共需要安排( )场比赛。
A.48 B.51 C.52 D.54
解析:
根据题意,现循环赛后淘汰赛,考查比赛场次问题;
24 个队分6个小组循环,即每个小组4个队;
每个小组内部4个队安排场次为:4x3/2=6场;
6个小组共需安排6x6=36场;
决出16强后,进行淘汰赛,我们说决出冠军要安排16-1=15场;
但题干又要求决出第三、四名,即这两也要赛一场,不是淘汰了就拉倒了,还得回来battle下,故总场次为:36+15+1=52次,答案选C。
例3:某高校学生处要在大一新生中组织篮球比赛,赛制为单循环形式,即每两个队之间都赛一场,如果学生处计划安排21场比赛,则应邀请多少支球队参加比赛?
A.5 B.8 C.7 D.6
解析:
考查单循环制,即n个队参赛,场次为n(n-1)/2
现知n(n-1)/2=21,即:n(n-1)=42,
根据乘法口诀有:6x7=42,即n=7,答案选C。
例4:乒乓球世界杯锦标赛上,中国队、丹麦队、日本队和德国队分在一个小组,每两个队之间都要比赛1场,已知日本队已比赛了1场,德国队已比赛了2场,中国队已比赛了3场,则丹麦队还有几场比赛未比?( )
A.0 B.1 C.2 D.3
解析:
根据条件“每两个队之间都比赛一场”,可知为单循环赛制:每个队都需完成3场比赛;
看条件:
中国队已比赛3场,对手为:丹麦、日本、德国;
日本已比赛1场,对手为中国;
德国已比赛2场,对手为中国、丹麦;
可知丹麦已完成与中国、德国的比赛,只剩日本未必,答案选B。
以上就是比赛问题;
喜大普奔,数量关系到这里终终终终于完成了!
坚持看完的你是不是也舒了一口气?还是觉得很遗憾,还意犹未尽?
感谢你自己哟,坚持了这么久,是不是有了很多收获?