NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 解释一下题目含义:
就是NeRF是能根据不同方位ray和位置xyz的请求,输出得到3D空间中该视角看去某个点的RGB和密度σ,因此相当于代表了一个3D场景中的属性。相当于:本来是只有一系列图片的,而NeRF就能根据图像(说图像不太准确,就是xyz和方位角)去代表出整个“真实”3D场景,该场景带有RGBσ属性。所以题目叫做将NeRF作为”代表场景“(即:Representing Scenes as Neural Radiance Fields),而我们的目标并不是合成3D场景或者进行3D重建,而是希望进行novel view synthesis(NVS)——即新视角合成(利用3d场景即NeRF去往任何一个视角进行投影得到2D视图,这才是用NeRF的最终目的——即 for View Synthesis ,题目没说是novel view synthesis,我想可能就是不一定是要novel(即新的)视角下的图,因为在训练时是 真实图片与真实图片对应视角下的合成图片 之间进行最小误差化),也就是希望解决 可以得到任何一个视角看去的2D图像是怎样的并尽可能提升其质量分辨率细节的 这么一个问题。所以在训练的时候,输入很多图像及对应的位姿信息,训练好之后输入一个新的位姿信息,就能合成对应视角看去的新视角合成图像。若理解有问题希望批评指正!