ICLR‘25 | 预测精准度再提升!使用 Transformer 新方法预测全球次季节到季节性天气

【ICLR 2025预讲会】系列内容

ICLR 2025预讲会系列文章来源于 DAMO 开发者矩阵与 AI Time 联合举办 ICLR 2025预讲会整理成稿,旨在帮助大家率先了解深度学习领域的最新研究方向和成果。本文为文章作者的观点/研究数据,仅供参考,不代表本账号的观点和研究内容。

摘要

常用的天气预报尺度一般在两周时间以内。传统预报方法一般用数值模型求解,计算量较大。近年来,业界出现了使用 AI 模型预测短期天气的方式,可以快速预测出两周以内的天气情况。另一类天气预报是气候预测,主要关注大尺度、长周期的未来气候情况,例如用于预测厄尔尼诺气象或者极地冰层变化情况等。次季节到季节性天气预测(S2S Forecasting)则介于两者之间,主要关注 2-6 周的预测时间尺度,可用于预测台风、热浪、梅雨等天气。

由于这一领域的预测所需数据较少,波动较大,因此预测难度较高。已有的方法一般是将短期数值模型或数据驱动 AI 模型扩展到 S2S 尺度进行预测。存在的主要问题是,这些方法会将地球表面映射成一个矩形图像,使用 Visual Transformer 的方法进行预测,但这种映射会存在很多失真现象。对此,香港科技大学团队提出了一个改进方法,将矩形映射改为按纬度切分的圆形映射,从而提高预测精度。该方法名为 CirT,论文发表在 ICLR 2025 上。

论文地址:https://arxiv.org/abs/2502.19750

代码仓库:https://github.com/compasszzn/cirt

图片

已有方法问题分析

已有的 S2S 预测方法的原理是给定一个天气要素在全球经纬度网格上的值分布,并用这个初始值进行间隔为周的预测:

图片

输入张量后,全球的天气情况实际上可以看作一张图像,这个图像随时间的变化就可以用 Visual transformer 的方法对其进行处理了。但这里的问题在于地球是一个球体,而上述图像其实是平面图像,平面到球体之间的映射是存在信息损失的,这种损失就会影响预测的精度。例如在图像上同样大小的矩形,在球体上实际上可能是形状、面积差异很大的两块区域:

图片

针对上述问题,香港科技大学团队提出了 CirT Transformer 方法。

图片

CirT 方法介绍与实验对比

CirT 方法的主要创新在于,绘制全球地理图像时不再使用球体到矩形的映射,而是按照纬度将球体分割成众多圆形,之后将这些圆形数据输入 Transformer 模型进行推演计算:

图片

这种方法就能避免矩形映射对地球球体信息的映射失真,使得模型可以更准确地模拟地球尺度的天气变化情况。

对该方法进行实验的设置如下:

图片

这里使用了 1.5 经度 x 1.5 纬度的数据集,使用 38 年历史的气象数据做训练,用 2017 年数据验证,2018 年数据测试。实验对比了一众数据驱动和数值计算的天气模型。

与数据驱动模型对比发现,CirT 模型改用新的球体映射方法后效果提升非常明显,另外迭代模型的误差会逐渐积累,导致预测精度显著落后:

图片

与数值计算模型对比发现,虽然这些模型在 4-6 周的预测精度上比数据驱动模型更稳定,但依旧落后于 CirT

图片


 

图片

对不同纬度地区的预测结果对比发现,CirT 在中高纬度地区的预测效果提升更加明显,这是因为中高纬度地区的球体映射到矩形时会有更多扭曲,CirT 方法不存在这些扭曲:

图片

这一优势从可视化图像中体现得更明显,下图中偏红色部分的预测精度较差:

图片

声明:CirT 这篇工作与另一篇同行工作有近似之处,但后者主要采用了按天间隔来预测的方法,感兴趣的读者可以参考。该文章的标题是:ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值