TransUnet数据集 处理好的Synapse病例数据 直接用

TransUnet原文中用到的CT医学图像,已经处理好的,直接用于源码中,用于TransUnet分割93aede4862484ab5b65c01afb38fd184.png
TransUnet源码所用到的处理好的Synapse数据集(网盘自取),直接按图中目录放入就可以了
网盘链接:链接:https://pan.baidu.com/s/1fLdKlgcRZ010uHkNctefvg?pwd=trqj 
提取码:trqj 

 

 

### 如何在 TransUNet 模型中加载预训练权重 TransUNet 是一种结合 Transformer 和 U-Net 结构的深度学习模型,广泛应用于医学图像分割等领域。为了提高模型性能并减少计算资源消耗,在自定义数据集上进行训练时通常会利用预训练权重。 以下是实现这一目标的具体方法: #### 使用 Keras 或 PyTorch 实现加载预训练权重 如果采用 Keras 进行开发,则可以通过 `keras.applications` 提供的功能加载预训练权重[^3]。然而,由于 TransUNet 并未直接包含于标准库中,因此需要手动指定路径或 URL 来加载对应的预训练权重文件。以下是一个基于 PyTorch 的代码示例,展示如何加载预训练权重到 TransUNet 中: ```python import torch from transunet import TransUnet # 假设已安装 TransUNet 库 # 初始化 TransUNet 模型结构 model = TransUnet(img_size=224, in_channels=3, classes=1) # 加载预训练权重 pretrained_weights_path = 'path/to/pretrained_weights.pth' state_dict = torch.load(pretrained_weights_path) model.load_state_dict(state_dict, strict=False) # 设置 strict=False 可忽略不匹配层 print("Pre-trained weights loaded successfully.") ``` 上述代码片段展示了如何通过 PyTorch 的 `torch.load()` 方法读取存储好的 `.pth` 文件中的权重,并将其映射至当前初始化的 TransUNet 模型架构中[^4]。注意设置参数 `strict=False`,以便允许部分层未被覆盖的情况发生(例如新增加的分类头或其他特定修改)。 #### 数据准备与训练流程调整 当处理自定义数据集时,需遵循类似的划分原则——即分为训练集、验证集以及可能存在的测试集[^2]。这有助于确保模型具备良好的泛化能力而不只是过拟合于单一子集中。具体操作如下所示: ```python from torchvision import transforms from torch.utils.data import DataLoader # 定义数据增强和标准化转换 data_transforms = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) # 创建 Dataset 对象并与 Dataloader 配合使用 train_dataset = CustomDataset(train_images_dir, transform=data_transforms) val_dataset = CustomDataset(val_images_dir, transform=data_transforms) train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False) # 开始训练循环... for epoch in range(num_epochs): train_loss = train_one_epoch(model, optimizer, criterion, train_loader) val_metrics = validate_model(model, val_loader) print(f'Epoch {epoch}: Train Loss={train_loss}, Val Metrics={val_metrics}') ``` 此脚本说明了完整的端到端工作流,包括但不限于数据变换设定、批次生成器配置及每轮迭代期间执行的主要逻辑步骤[^1]。 ---
评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Caicheng-Ge

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值