当使用神经网络进行多分类问题的训练时,可以使用交叉熵损失函数。下面是一个简单的例子来说明使用方法:
假设我们有一个包含3个类别的分类任务,我们的神经网络输出了一个包含3个元素的向量,分别代表每个类别的预测概率。我们的训练数据包含了真实的标签,用独热编码表示。例如,如果一个样本的真实标签是第2类,那么对应的独热编码为[0, 1, 0]
。
神经网络的输出经过softmax激活函数之后,得到了预测的概率分布。假设预测结果为[0.3, 0.4, 0.3]
。我们可以使用交叉熵损失函数来计算这个预测结果的损失值。
交叉熵损失函数的计算公式为:
L = − Σ i = 0 N ( y i log ( p i ) ) L = -Σ_{i=0}^N(y_i \log(p_i)) L=−Σi=0N(yilog(pi))
其中, y i y_i yi 是真实标签的独热编码, p i p_i pi 是模型的预测概率。
代入数据后,我们可以计算出损失值:
L = − ( 0 × log ( 0.3 ) + 1 × log ( 0.4 ) + 0 × log ( 0.3 ) ) ≈ 0.916 L = -(0 \times \log(0.3) + 1 \times \log(0.4) + 0 \times \log(0.3)) ≈ 0.916 L=−(0×log(0.3)+1×log(0.4)+0×log(0.3))≈0.916
通过最小化这个损失值,我们可以使用反向传播算法来更新神经网络的参数,使得模型的预测结果更接近真实的标签,从而提高分类准确性。