交叉熵函数

当使用神经网络进行多分类问题的训练时,可以使用交叉熵损失函数。下面是一个简单的例子来说明使用方法:

假设我们有一个包含3个类别的分类任务,我们的神经网络输出了一个包含3个元素的向量,分别代表每个类别的预测概率。我们的训练数据包含了真实的标签,用独热编码表示。例如,如果一个样本的真实标签是第2类,那么对应的独热编码为[0, 1, 0]

神经网络的输出经过softmax激活函数之后,得到了预测的概率分布。假设预测结果为[0.3, 0.4, 0.3]。我们可以使用交叉熵损失函数来计算这个预测结果的损失值。

交叉熵损失函数的计算公式为:

L = − Σ i = 0 N ( y i log ⁡ ( p i ) ) L = -Σ_{i=0}^N(y_i \log(p_i)) L=Σi=0N(yilog(pi))

其中, y i y_i yi 是真实标签的独热编码, p i p_i pi 是模型的预测概率。

代入数据后,我们可以计算出损失值:

L = − ( 0 × log ⁡ ( 0.3 ) + 1 × log ⁡ ( 0.4 ) + 0 × log ⁡ ( 0.3 ) ) ≈ 0.916 L = -(0 \times \log(0.3) + 1 \times \log(0.4) + 0 \times \log(0.3)) ≈ 0.916 L=(0×log(0.3)+1×log(0.4)+0×log(0.3))0.916

通过最小化这个损失值,我们可以使用反向传播算法来更新神经网络的参数,使得模型的预测结果更接近真实的标签,从而提高分类准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值