在深度学习推理和训练中,模型编译技术已成为解锁硬件极限性能的关键。当PyTorch和TensorFlow等框架遭遇硬件多样性(CPU/GPU/NPU/ASIC)和模型复杂性(如动态形状、稀疏计算)的挑战时,MLIR(Multi-Level Intermediate Representation和TVM(Tensor Virtual Machine构成的编译技术栈展现了强大的跨平台优化能力。
一、MLIR:可扩展中间表示的全栈数学建模
1. MLIR的代数语义建模
MLIR的核心设计思想是将所有计算抽象为张量代数表达式,支持任意硬件的数学描述。
(1) 张量代数基础
定义张量 T ∈ R d 1 × d 2 × ⋯ × d n \mathcal{T} \in \mathbb{R}^{d_1 \times d_2 \times \dots \times d_n} T∈Rd1×d2×⋯×dn,其切片操作可表示为:
T [ i 1 : i 2 , . . . , j 1 : j 2 ] = ∑ k 1 = 0 w 1 ∑ k 2 = 0 w 2 W [ k 1 , k 2 ] ⋅ X [ i 1 + k 1 , i 2 + k 2 ] \mathcal{T}[i_1:i_2, ..., j_1:j_2] = \sum_{k_1=0}^{w_1} \sum_{k_2=0}^{w_2} \mathcal{W}[k_1, k_2] \cdot \mathcal{X}[i_1+k_1, i_2+k_2] T[i1:i2,...,j1:j2]=k1=0∑w1k2=0∑w2W[k1,k2]⋅X[i1+k1,i2+k2]
其中卷积核 W \mathcal{W} W的滑动窗口计算可映射到MLIR的linalg.conv
操作。
(2) MLIR操作符的数学定义
以矩阵乘法为例,MLIR的Linalg方言定义:
// 矩阵乘法C = A * B的数学表达
%result = linalg.matmul ins(%A, %B: tensor<MxKxf32>, tensor<KxNxf32>)
outs(%C: tensor<MxNxf32>) -> tensor<MxNxf32>
对应的数学形式:
C i , j = ∑ k = 0 K − 1 A i , k × B k , j ∀ i ∈ [ 0 , M ) , j ∈ [ 0 , N ) C_{i,j} = \sum_{k=0}^{K-1} A_{i,k} \times B_{k,j} \quad \forall i \in [0,M), j \in [0,N) Ci,j=k=0∑K−1Ai,k×