模型编译技术:MLIR与TVM的跨硬件优化实践

在深度学习推理和训练中,模型编译技术已成为解锁硬件极限性能的关键。当PyTorch和TensorFlow等框架遭遇硬件多样性(CPU/GPU/NPU/ASIC)和模型复杂性(如动态形状、稀疏计算)的挑战时,MLIR(Multi-Level Intermediate RepresentationTVM(Tensor Virtual Machine构成的编译技术栈展现了强大的跨平台优化能力。


一、MLIR:可扩展中间表示的全栈数学建模

1. MLIR的代数语义建模

MLIR的核心设计思想是将所有计算抽象为张量代数表达式,支持任意硬件的数学描述。

(1) 张量代数基础

定义张量 T ∈ R d 1 × d 2 × ⋯ × d n \mathcal{T} \in \mathbb{R}^{d_1 \times d_2 \times \dots \times d_n} TRd1×d2××dn,其切片操作可表示为:
T [ i 1 : i 2 , . . . , j 1 : j 2 ] = ∑ k 1 = 0 w 1 ∑ k 2 = 0 w 2 W [ k 1 , k 2 ] ⋅ X [ i 1 + k 1 , i 2 + k 2 ] \mathcal{T}[i_1:i_2, ..., j_1:j_2] = \sum_{k_1=0}^{w_1} \sum_{k_2=0}^{w_2} \mathcal{W}[k_1, k_2] \cdot \mathcal{X}[i_1+k_1, i_2+k_2] T[i1:i2,...,j1:j2]=k1=0w1k2=0w2W[k1,k2]X[i1+k1,i2+k2]
其中卷积核 W \mathcal{W} W的滑动窗口计算可映射到MLIR的linalg.conv操作。

(2) MLIR操作符的数学定义

以矩阵乘法为例,MLIR的Linalg方言定义:

// 矩阵乘法C = A * B的数学表达  
%result = linalg.matmul ins(%A, %B: tensor<MxKxf32>, tensor<KxNxf32>)  
                      outs(%C: tensor<MxNxf32>) -> tensor<MxNxf32>  

对应的数学形式:
C i , j = ∑ k = 0 K − 1 A i , k × B k , j ∀ i ∈ [ 0 , M ) , j ∈ [ 0 , N ) C_{i,j} = \sum_{k=0}^{K-1} A_{i,k} \times B_{k,j} \quad \forall i \in [0,M), j \in [0,N) Ci,j=k=0K1Ai,k×

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值