HRDA-Net:面向真实场景的图像多篡改检测与定位算法

本文提出了HRDA-Net,一个端到端的高分辨率扩张卷积注意力网络,用于真实场景下图像的多篡改检测与定位。通过构建多篡改数据集MM Dataset,解决现有数据集的局限性。HRDA-Net利用TDDCA模块融合RGB和SRM特征,结合MDC模块实现多篡改任务。实验表明,HRDA-Net在多篡改检测与定位任务上表现出优越性能,并具有良好的稳健性。

摘要

针对主流篡改数据集单幅图像仅包含一类篡改操作,且对真实图像定位存在“伪影”问题,构建面向真实场景的多篡改数据集(MM Dataset),每幅篡改图像包含拼接和移除2种篡改操作。针对多篡改检测与定位任务,提出端到端的高分辨率扩张卷积注意力网络(HRDA-Net),利用自顶向下扩张卷积注意力(TDDCA)模块融合图像 RGB 域和 SRM 域特征。最后,采用混合扩张卷积模块(MDC)分别提取拼接、移除和篡改检测任务特征,实现篡改区域定位和篡改置信度预测。为提高网络训练效率,提出余弦相似度损失函数作为辅助损失。实验结果表明,在MM Dataset下,与主流语义分割方法相比,HRDA-Net具有较优的性能和较强的稳健性;在单篡改数据集CASIA和NIST下,与主流单篡改定位方法相比,HRDA-Net的F1和AUC分数均较优。

关键词: 深度学习 ; 多篡改检测与定位 ; 多篡改数据集 ; 余弦相似度损失函数

0 引言

ffmpeg.exe -y -i 1.mp4 -vf select='eq(n,0)+mod(n,21.41738)',scale=720:1280:force_original_aspect_ratio=decrease,pad=720:1280:(ow-iw)/2:(oh-ih)/2,setsar=1:1,fps=60 -c:v libx264 -preset faster -x264-params nal-hrd=cbr -b:v 15000k -profile:v high -level 4.0 -pix_fmt yuv420p -movflags +faststart -flags +cgop -aq-strength 0.8 -deblock 1:1 -tune grain -threads 0 -t 5.2 a1.mp4 ffmpeg.exe -y -i a1.mp4 -ss 00:00:00 -t 0.333 -vf scale=720:1280:force_original_aspect_ratio=decrease,pad=720:1280:(ow-iw)/2:(oh-ih)/2,setsar=1:1,fps=60 -c:v libx264 -preset faster -x264-params nal-hrd=cbr -b:v 15000k -profile:v high -level 4.0 -pix_fmt yuv420p -movflags +faststart -flags +cgop -init_qpP 0 -quality best -rc cbr -threads 0 a0.mp4 ffmpeg.exe -y -stream_loop -1 -ss 0 -t 5.2 -i C:/Users/Administrator/Desktop/2.mp4 -vf scale=720:1280,setsar=1:1,rotate=-1*45.57662*PI/180:ow=720:oh=1280:c=black,hue=h=360*(0.5+0.5*sin(3.18865*PI*t/7.43408)):s=1,crop=iw*0.8:ih*0.8:(iw-iw*0.8)/2:(ih-ih*0.8)/2,scale=720:1280,setsar=1,fps=60,format=yuva420p -c:v libx264 -preset faster -threads 0 -t 5.2 b1.mp4 ffmpeg.exe -y -i a0.mp4 -i b1.mp4 -filter_complex [0:v][1:v]concat=n=2:v=1:a=0[outv] -map [outv] -c:v libx264 -preset faster -crf 23 -c:a copy -threads 0 -t 5.2 a0b1.mp4 ffmpeg.exe -y -i a1.mp4 -i a0b1.mp4 -filter_complex [0:v]setpts=PTS-STARTPTS,fps=60[base];[1:v]setpts=PTS-STARTPTS,format=yuv420p,format=rgba,colorchannelmixer=aa=0.35[flash];[base][flash]overlay=enable='if(eq(mod(n,2),1),1,0)'[outv] -map [outv] -map 0:a -c:v libx264 -preset faster -crf 23 -c:a copy -x264-params level=6.2:ref=4 -threads 0 -t 5.2 -video_track_timescale 1000k a1b1.mp4 ffmpeg.exe -y -i a1b1.mp4 -vf [0:v]setpts='N/FRAME_RATE/TB-666.5',select='not(eq(n,0))' -vsync 0 -global_quality 23 -c:v libx264 -preset faster -movflags faststart -c:a copy -t 5.2 -video_track_timescale 1000k 20250817_165759_侯总AB_1.mp4 有没有办法通过修改元数据或者底层二进制去达到 让视频号检测不到逐帧交替
最新发布
08-31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值