面向边缘智能的车联网通信和计算资源联合管理策略

本文提出面向边缘智能的车联网通信和计算资源联合管理策略,利用多智能体深度强化学习方法优化资源分配,提升任务执行率并降低能耗。在考虑边缘节点内存容量的基础上,通过模型切分进行计算任务卸载,解决车载终端处理能力和任务时效需求的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【摘  要】海量数据驱动未来车联网向智能化演进,计算密集型业务的激增给网络中通信和计算资源的管理带来了极大的挑战。为了解决上述问题,提出了面向边缘智能的车联网通信和计算资源联合管理策略,在考虑各边缘节点内存容量的前提下,通过模型切分将适量计算任务卸载到最优边缘节点,提高任务执行率并降低系统能耗。上述资源联合管理策略可建模为动态优化问题,传统的优化方法难以求解。因此,将人工智能技术应用到边缘计算领域,采用多智能体深度强化学习方法合理分配网络频谱资源和计算资源,提升网络性能。

【关键词】车联网;边缘计算;资源管理;多智能体深度强化学习

0   引言

近年来,随着无线通信技术的发展和智能网联车辆的普及,面向智能交通服务的车联网[1-3]已经引起了学术界和工业界的广泛关注。从2021年至2026年,全球网联汽车的市场规模预计将以19.0%的复合年均增长率增长,在2026年达到563亿美元[4]。随着自动驾驶技术的发展,基于智能网联汽车的各类新兴应用层出不穷,如超高清视频、实时导航和交通安全服务等,一方面使车联网的数据流量爆发式增长,带来了极大的带宽压力,另一方面对车辆本身计算能力提出了极高的要求[5-7]。

为了解决车载终端处理能力差、任务时效需求高等问题,计算卸载技术被广泛

### 面向计算密集型任务的车联网边缘计算 #### 计算密集型任务的特点及其挑战 计算密集型任务通常涉及大量的数据处理复杂的运算逻辑,在车联网环境中,这些任务可能包括实时视频分析、路径规划优化以及高级驾驶辅助系统的运行等。由于车辆移动性网络条件变化频繁,如何高效地完成这类任务成为一大挑战。 #### 边缘计算车联网中的优势 通过将部分或全部计算工作从车载设备转移到靠近用户的边缘节点上执行,可以显著减少延迟并提高响应速度。这不仅有助于改善用户体验,还能增强系统整体性能服务质量[^1]。 #### 实现方案概述 针对计算密集型任务,一种有效的解决方案是在车联网架构中集成边缘计算平台: - **多级缓存机制**:利用分布式存储技术建立多层次的数据缓存体系,使得常用数据能够快速获取而不必每次都访问远程数据中心。 - **动态资源调度策略**:根据当前网络状况及各节点负载情况自动调整任务分配计划,确保重要操作优先得到处理的同时最大化整个系统的吞吐量。 - **异构硬件支持**:考虑到不同类型的计算需求(如CPU/GPU/FPGA),提供灵活配置选项以便更好地匹配特定应用场景下的最优解法[^2]. ```python def allocate_resources(task_requirements, available_nodes): """ 动态分配最合适的计算资源给定的任务. 参数: task_requirements (dict): 描述所需资源的信息字典 available_nodes (list of dict): 可用节点列表 返回: selected_node (dict): 被选作执行此任务的最佳节点详情 """ best_fit = None min_cost = float('inf') for node in available_nodes: cost = calculate_resource_matching_score(node['resources'], task_requirements) if cost < min_cost and meets_constraints(node, task_requirements): min_cost = cost best_fit = node return best_fit ``` #### 研究进展未来趋势 随着5G/6G通信技术AI算法的发展,越来越多的研究致力于探索更高效的车联网边缘计算模式。特别是对于那些需要高度安全性隐私保护的应用场合而言,基于联邦学习的方法正逐渐受到关注,它允许多个参方共同训练共享模型而无需直接交换原始数据集[^3]。 此外,为了满足日益增长的安全性要求,一些最新的研究成果还探讨了如何借助区块链构建更加可靠的认证框架来保障车联网环境内的各类交互活动[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值